Poly(Lactic Acid) / Polyester Blends: Review of Current and Future Applications

Main Article Content

Zehra Kuru
Mehmet Arif Kaya

Abstract

Poly (lactic acid) (PLA) is a promising polymer with its value and potential due to its sustainability, low carbon footprint, and being a superior bio-based polymer compared to other bioplastics. Since it is also a compostable aliphatic polyester, has been frequently subjected to research.


Researchers have conducted studies on the compatibility of PLA, which is a bio-based, biodegradable, and compostable, renewable polymer, with traditional petrochemical-based polymers, especially polyesters such as polybutylene terephthalate (PBT), and polyethylene terephthalate (PET). It is highly important that applications of PLA/polyester blends will ensure that the materials developed are not only economically and sustainable but also can meet current and future appropriate needs. PLA-based materials have some disadvantages such as slow biodegradation rate, high cost, and low toughness, and to eliminate mentioned drawbacks generally blends are prepared with petroleum-based polymers.


In this review, information about the perspectives with studies for PLA/polyester blends; approaches to the subject, potential application areas, and contributions for the future were given.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Kuru, Z., & Kaya, M. A. (2023). Poly(Lactic Acid) / Polyester Blends: Review of Current and Future Applications . The European Journal of Research and Development, 3(1), 175–199. https://doi.org/10.56038/ejrnd.v3i1.259
Section
Articles

References

R.E. Drumright, P.R. Gruber, and D.E. Henton, Adv. Mater., 12, 1841 (2000). DOI: https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4 (2004) 835–864. DOI: https://doi.org/10.1002/mabi.200400043

R. Datta, M. Henry, Lactic acid: recent advances in products, processes, and Technologies a review, J. Chem. Technol. Biotechnol. 81 (2006) 1119–1129. DOI: https://doi.org/10.1002/jctb.1486

J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab. 59 (1998) 145–152. DOI: https://doi.org/10.1016/S0141-3910(97)00148-1

J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335–2346. DOI: https://doi.org/10.1016/S0142-9612(00)00101-0

K.E. Perepelkin, Polylactide fibers: fabrication, properties, use, prospects. A review, Fibre Chem. 34 (2002) 85–100. DOI: https://doi.org/10.1023/A:1016359925976

K. Leja, G. Lewandowicz. Polymer biodegradation and biodegradable polymers-a review. Pol Environ Stud 2010;19:255-266.

R. Geyer.; J. R. Jambeck.; K. L. Law. Production, use, and the fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. DOI: https://doi.org/10.1126/sciadv.1700782

Wang, M.H.; He, Y.; Sen, B. Research and management of plastic pollution in coastal environments of China. Environ. Pollut. 2019, 248, 898–905. DOI: https://doi.org/10.1016/j.envpol.2019.02.098

M. Compa, C. Alomar, C. Wilcox, E. van Sebille, L. Lebreton, B.D. Hardesty, S. Deudero. Risk assessment of plastic pollution on marine diversity in the Mediterranean Sea. Sci. Total Environ. 2019, 678, 188–196. DOI: https://doi.org/10.1016/j.scitotenv.2019.04.355

R.C. Hale, M.E. Seeley, M.J. La Guardia, L. Mai, EY. Zeng. A Global Perspective on Microplastics. J. Geophys. Res. Ocean. 2020, 125. DOI: https://doi.org/10.1029/2018JC014719

Castro-Jiménez, J.; González-Fernández, D.; Fornier, M.; Schmidt, N.; Sempéré, R. Macro-litter in surface waters from the Rhone River: Plastic pollution and loading to the NW Mediterranean Sea. Mar. Pollut. Bull. 2019, 146, 60–66. DOI: https://doi.org/10.1016/j.marpolbul.2019.05.067

Tessnow-von Wysocki, I.; le Billon, P. Plastics at sea: Treaty design for a global solution to marine plastic pollution. Environ. Sci. Policy 2019, 100, 94–104. DOI: https://doi.org/10.1016/j.envsci.2019.06.005

Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. DOI: https://doi.org/10.1021/acs.est.5b03163

Polybutylene Terephthalate (PBT) Global Market Trajectory Analytics MCP-6509 .

Antić, V., & Pergal, M. V. (2011). Poly (butylene terephthalate)-Synthesis, Properties, Application. Handbook of Engineering and Speciality Thermoplastics: Polyethers and Polyesters, 3, 127-180. DOI: https://doi.org/10.1002/9781118104729.ch5

Choi, G. (2005). Polybutylene Terephthalate (PBT). Engineering Plastics Handbook, 2nd ed., McGraw-Hill, Blacklick, OH, USA, 131-154.

Aravinthan, G., & Kale, D. D. (2005). Blends of poly (ethylene terephthalate) and poly (butylene terephthalate). Journal of Applied Polymer Science, 98(1), 75-82. DOI: https://doi.org/10.1002/app.22017

Kannan G., & Grieshaber S.E., & Zhao W. (2016). Thermoplastic Polyesters. Handbook of Thermoplastics, 319-347.

Gallucci, R. R., & Patel, B. R. (2004). Poly (butylene terephthalate). Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, 293-321. DOI: https://doi.org/10.1002/0470090685.ch8

Kalkar, A. K., & Deshpande, A. A. (2001). Kinetics of isothermal and non‐isothermal crystallization of poly (butylene terephthalate)/liquid crystalline polymer blends. Polymer Engineering & Science, 41(9), 1597-1615. DOI: https://doi.org/10.1002/pen.10858

Maram, S. K. (2010). Laser transmission welding of polybutylene terephthalate and polyethylene terephthalate blends (Doctoral dissertation, Queen's University (Canada)).

Subramanian, M. N. (2017). Polymer Blends and Composites: Chemistry and Technology. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119383581

L.A. Utracki, Commercial polymer blends, Springer Science & Business Media, 2013.

B. Lepoittevin, P. Roger, Poly (ethylene terephthalate), Handb. Eng. Spec. Thermoplast. 3 (2011) 97–126. DOI: https://doi.org/10.1002/9781118104729.ch4

L. Shen, E. Worrell, M.K. Patel, Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling, Resour. Conserv. Recycl. 55 (2010) 34–52. DOI: https://doi.org/10.1016/j.resconrec.2010.06.014

P.G. Galanty, J.J. Richardson, Polyethylene Terephthalates(PET), ASM Int. Eng. Plast. Eng. Mater. Handbook, 2 (1988) 172–176.

A. Ghanbari, M.C. Heuzey, P.J. Carreau, M.T. Ton-That, A novel approach to control thermal degradation of PET/organoclay nanocomposites and improve clay exfoliation, Polymer (Guildf). 54 (2013) 1361–1369. DOI: https://doi.org/10.1016/j.polymer.2012.12.066

P. Raffa, M.-B. Coltelli, S. Savi, S. Bianchi, V. Castelvetro, Chain extension and branching of poly (ethylene terephthalate)(PET) with di-and multifunctional epoxy or isocyanate additives: An experimental and modelling study, React. Funct. Polym. 72 (2012) 50–60. DOI: https://doi.org/10.1016/j.reactfunctpolym.2011.10.007

T. Chilton, S. Burnley, S. Nesaratnam, A life cycle assessment of the closed-loop recycling and thermal recovery of post-consumer PET, Resour. Conserv. Recycl. 54 (2010) 1241–1249. DOI: https://doi.org/10.1016/j.resconrec.2010.04.002

Y. Zhang, W. Guo, H. Zhang, C. Wu, Influence of chain extension on the compatibilization and properties of recycled poly (ethylene terephthalate)/linear low density polyethylene blends, Polym. Degrad. Stab. 94 (2009) 1135–1141. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.03.010

Saidi, M. A. A., Hassan, A., Wahit, M. U., & Choy, L. J. Propertıes Of Polyethylene Terephthalate/Polybutylene Terephthalate Blends. Sharing Visions and Solutions for Better Future, 245.

Awaja, F., & Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41(7), 1453-1477. DOI: https://doi.org/10.1016/j.eurpolymj.2005.02.005

Jankauskaite, V., Macijauskas, G., & Lygaitis, R. (2008). Polyethylene terephthalate waste recycling and application possibilities: a review. Mater Sci (Medžiagotyra), 14(2), 119-127.

Yoshihara, Ν., Shibaya, Μ., & Ishihara, Η. (2005). Cold Crystallization Behaviors of Poly (Ethylene Terephtahalate). Journal of Polymer Engineering, 25(2), 97-114. DOI: https://doi.org/10.1515/POLYENG.2005.25.2.97

Bouma, K., & Gaymans, R. J. (2001). Crystallization of poly (ethylene terephthalate) and poly (butylene terephthalate) modified by diamides. Polymer Engineering & Science, 41(3), 466-474. DOI: https://doi.org/10.1002/pen.10743

Kong, Y., & Hay, J. N. (2003). Multiple melting behaviour of poly (ethylene terephthalate). Polymer, 44(3), 623-633. DOI: https://doi.org/10.1016/S0032-3861(02)00814-5

Wang, R. Y., Chen, X. D., Xu, Q. J., Wang, Y. J., & Zhang, Q. (2014). Study on crystallization performance of polyethylene terephthalate/polybutylene terephthalate alloys. Journal of Polymer Engineering, 34(8), 747-754. DOI: https://doi.org/10.1515/polyeng-2014-0106

Szostak, M. (2004). Mechanical and thermal properties of PET/PBT blends. Molecular Crystals and Liquid Crystals, 416(1), 209-215. DOI: https://doi.org/10.1080/15421400490481377

Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F, Polylactic acid blends: the future of green, light and tough, Progress in Polymer Science (2018), https://doi.org/10.1016/j.progpolymsci.2018.07.001. DOI: https://doi.org/10.1016/j.progpolymsci.2018.07.001

Balla, E.; Daniilidis, V.;Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA Applications. Polymers 2021, 13, 1822. https:// doi.org/10.3390/polym13111822. DOI: https://doi.org/10.3390/polym13111822

M.Nofar, D.Sacligil, P.Carreau, M.Kamal, M. Heuzey, PLA blends: Processing, Properties and Applications, International Journey of Biological Macromolecules, 2018. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.002

M.L.D. Lorenzo, P. Rubino, M. Cocca, Miscibility and properties of poly(l-lactic acid)/poly(butylene terephthalate) blends, Eur. Polym. J. 49 (2013) 3309–3317, https://doi.org/10.1016/j.eurpolymj.2013.06.038.

Olewnik E., Czerwiński W., Nowaczyk J., Sepulchre M-O., Tessier M., Salhi S., Fradet A.: Synthesis and structural study of copolymers of L-lactic acid and bis (2-hydroxyethyl terephthalate). European Polymer Journal, 43, 1009–1019 (2007). https://doi.org/10.1016/J.eurpolymj.2006.11.025. DOI: https://doi.org/10.1016/j.eurpolymj.2006.11.025

Zhou J., Jiang Z., Wang Z., Zhang J., Li J., Li Y., Zhang J., Chen P., Gu Q.: Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA. RSC Advances, 3, 18464– 18473 (2013). https://doi.org/10.1039/c3ra42096e. DOI: https://doi.org/10.1039/c3ra42096e

Park S. S., Chae S. H., Im S. S.: Transesterification and crystallization behavior of poly(butylene succinate)/ poly(butylene terephthalate) block copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 36, 147–156 (1998). https://doi.org/10.1002/(SICI)1099-0518(19980115)36:1<147::AID-POLA19>3.0.CO;2-J. DOI: https://doi.org/10.1002/(SICI)1099-0518(19980115)36:1<147::AID-POLA19>3.0.CO;2-J

Di Lorenzo M. L., Rubino P., Cocca M.: Miscibility and properties of poly(L-lactic acid)/poly(butylene terephthalate) blends. European Polymer Journal, 49, 3309– 3317 (2013). https://doi.org/10.1016/J.eurpolymj.2013.06.038. DOI: https://doi.org/10.1016/j.eurpolymj.2013.06.038

Samthong C., Deetuam C., Yamaguchi M., Praserthdam P., Somwangthanaroj A.: Effects of size and shape of dispersed poly(butylene terephthalate) on isothermal crystallization kinetics and morphology of poly(lactic acid) blends. Polymer Engineering and Science, 56, 258–268 (2016). DOI: https://doi.org/10.1002/pen.24246

Santos L. G., Costa L. C., Pessan L. A.: Development of biodegradable PLA/PBT nanoblends. Journal of Applied Polymer Science, 135, 45951/1–45951/9 (2018). https://doi.org/10.1002/app.45951.

Pivsa-Art W., Chaiyasat A., Pivsa-Art S., Yamane H., Ohara H.: Preparation of polymer blends between poly (lactic acid) and poly(butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia, 34, 549–554 (2013). https://doi.org/10.1016/J.egypro.2013.06.784. DOI: https://doi.org/10.1016/j.egypro.2013.06.784

Kint D. P. R., Alla A., Deloret E., Campos J. L., MuñozGuerra S.: Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. Polymer, 44, 1321–1330 (2003). https://doi.org/10.1016/S0032-3861(02)00938-2. DOI: https://doi.org/10.1016/S0032-3861(02)00938-2

Soccio M., Lotti N., Finelli L., Gazzano M., Munari A.: Influence of transesterification reactions on the miscibility and thermal properties of poly(butylene/diethylene succinate) copolymers. European Polymer Journal, 44, 1722–1732 (2008). https://doi.org/10.1016/J.eurpolymj.2008.03.022. DOI: https://doi.org/10.1016/j.eurpolymj.2008.03.022

Muralisrinivasan N. S.: Polymer blends and composites: Chemistry and technology. Scrivener, Beverly (2017).

Santos L. G., Costa L. C., Pessan L. A.: Development of biodegradable PLA/PBT nanoblends. Journal of Applied Polymer Science, 135, 45951/1–45951/9 (2018). https://doi.org/10.1. DOI: https://doi.org/10.1002/app.45951

Kuru, Z., Kaya, M. A. (2023) Improving the Properties of Polylactic Acid by Melt Blending (M.Sc. Thesis, Yalova University Institute of Graduate Studies ).

Kuru, Z., Kaya, M. A. Improving the Properties of Biodegradable PLA via Blending with Polyesters for Industrial Applications. The European Journal of Research and Development,2(4), 299-318. DOI: https://doi.org/10.56038/ejrnd.v2i4.201

B. Girija, R. Sailaja, G. Madras, Thermal degradation and mechanical properties of PET blends, Polym. Degrad. Stab. 90 (2005) 147–153, https://doi.org/10.1016/j. polymdegradstab.2005.03.003. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.03.003

H. Chen, M. Pyda, P. Cebe, Non-isothermal crystallization of PET/PLA blends, Thermochim. Acta 492 (2009) 61–66, https://doi.org/10.1016/j.tca.2009.04.023. DOI: https://doi.org/10.1016/j.tca.2009.04.023

Y. Fu, L. Liao, L. Yang, Y. Lan, L. Mei, Y. Liu, et al., Molecular dynamics and dissipative particle youıdynamics simulations for prediction of miscibility in polyethylene terephthalate/polylactide blends, Mol. Simul. 39 (2012) 415–422, https://doi.org/10. 1080/08927022.2012.738294. DOI: https://doi.org/10.1080/08927022.2012.738294

A. Torres-Huerta, D. Palma-Ramírez, M. Domínguez-Crespo, D.D. Angel-López, D.D.L. Fuente, Comparative assessment of miscibility and degradability on PET/ PLA and PET/chitosan blends, Eur. Polym. J. 61 (2014) 285–299, https://doi.org/ 10.1016/j.eurpolymj.2014.10.016. DOI: https://doi.org/10.1016/j.eurpolymj.2014.10.016

K. Li, B. Mao, P. Cebe, Electrospun fibers of poly(ethylene terephthalate) blended with poly(lactic acid), J. Therm. Anal. Calorim. 116 (2013) 1351–1359, https:// doi.org/10.1007/s10973-013-3583-4. DOI: https://doi.org/10.1007/s10973-013-3583-4

A.R. Mclauchlin, O.R. Ghita, Studies on the thermal and mechanical behavior of PLA-PET blends, J. Appl. Polym. Sci. 133 (2016) 44147, https://doi.org/10.1002/ app.44147. DOI: https://doi.org/10.1002/app.44147

A.M. Torres-Huerta, D.D. Angel-López, M.A. Domínguez-Crespo, D. Palma-Ramírez, M.E. Perales-Castro, A. Flores-Vela, Morphological and mechanical properties dependence of PLA amount in PET matrix processed by single-screw extrusion, Polym.-Plast. Technol. Eng. 55 (2016) 672–683, https://doi.org/10.1080/ 03602559.2015.1132433. DOI: https://doi.org/10.1080/03602559.2015.1132433

W.-R. Jiang, R.-Y. Bao, W. Yang, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, Morphology, interfacial and mechanical properties of polylactide/poly(ethylene terephthalate glycol) blends compatibilized by polylactide-g-maleic anhydride, Mater. Des. 59 (2014) 524-531, https://doi.org/10.1016/j.matdes.2014.03.016. DOI: https://doi.org/10.1016/j.matdes.2014.03.016

F.L. Mantia, L. Botta, M. Morreale, R. Scaffaro, Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles, Polym. Degrad. Stab. (2011) 21–24, https://doi.org/10.1016/j.polymdegradstab.2011.10.017. DOI: https://doi.org/10.1016/j.polymdegradstab.2011.10.017

You, X.; Snowdon, M. R.; Misra, M.; Mohanty, A. K. Bio-based Poly (Ethylene Terephthalate)/Poly (Lactic Acid) Blends Tailored with Epoxide Compatibilizers. ACS Omega 2018, 3 (9), 11759−11769. DOI: https://doi.org/10.1021/acsomega.8b01353

Hamad, K.; Kaseem, M.; Deri, F. Poly(Lactic Acid)/Low Density Polyethylene Polymer Blends: Preparation and Characterization. Asia-Pac. J. Chem. Eng. 2012, 7 (SUPPL. 3), S310−316. DOI: https://doi.org/10.1002/apj.1649

Zhong, S.; Pearce, J. M. Tightening the Loop on the Circular Economy: Coupled Distributed Recycling and Manufacturing with Recyclebot and RepRap 3-D Printing. Resour. Conserv. Recycl. 2018, 128, 48−58. DOI: https://doi.org/10.1016/j.resconrec.2017.09.023

Hees, T.; Zhong, F.; Stürzel, M.; Mülhaupt, R. Tailoring Hydrocarbon Polymers and All-Hydrocarbon Composites for Circular Economy. Macromol. Rapid Commun. 2019, 40 (1), 1800608. DOI: https://doi.org/10.1002/marc.201800608

Kishna, M.; Niesten, E.; Negro, S.; Hekkert, M. P. The Role of Alliances in Creating Legitimacy of Sustainable Technologies: A Study on the Field of Bio-Plastics. J. Cleaner Prod. 2017, 155, 7−16. DOI: https://doi.org/10.1016/j.jclepro.2016.06.089

Iniguez-Franco, F.; Auras, R.; Dolan, K.; Selke, S.; Holmes, D.; Rubino, M.; Soto-Valdez, H. Chemical Recycling of Poly(Lactic Acid) by Water-Ethanol Solutions. Polym. Degrad. Stab. 2018, 149, 28−38. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.01.016

Polylactic Acid Market Size Share and Trends. Available online: www.researchandmarkets.com (accessed on 17 April 2021).

Kabirian, F.; Ditkowski, B.; Zamanian, A.; Heying, R.; Mozafari, M. An innovative approach towards 3D-printed scaffolds for the next generation of tissue-engineered vascular grafts. Mater. Today Proc. 2018, 5, 15586–15594. DOI: https://doi.org/10.1016/j.matpr.2018.04.167

Adesina, O.T.; Jamiru, T.; Sadiku, E.R.; Ogunbiyi, O.F.; Adegbola, T.A.Water absorption and thermal degradation behavior of graphene reinforced poly(lactic) acid nanocomposite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 627. DOI: https://doi.org/10.1088/1757-899X/627/1/012015

Avinc, O.; Khoddami, A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem. 2009, 41, 391–401. DOI: https://doi.org/10.1007/s10692-010-9213-z

Yang, Y.; Zhang, M.; Ju, Z.; Tam, P.Y.; Hua, T.; Younas, M.W.; Kamrul, H.; Hu, H. Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications. Text. Res. J. 2020. DOI: https://doi.org/10.1177/0040517520984101

Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. DOI: https://doi.org/10.1002/pen.25511

Valimäki, M.K.; Sokka, L.I.; Peltola, H.B.; Ihme, S.S.; Rokkonen, T.M.J.; Kurkela, T.J.; Ollila, J.T.; Korhonen, A.T.; Hast, J.T. Printed and hybrid integrated electronics using bio-based and recycled materials—increasing sustainability with greener materials and technologies. Int. J. Adv. Manuf. Technol. 2020, 111, 325–339. DOI: https://doi.org/10.1007/s00170-020-06029-8

Tümer, E. H., & Erbil, H. Y. (2021). Extrusion-Based 3D Printing Applications of PLA Composites: A Review. Coatings, 11(4), 390. doi:10.3390/coatings11040390 . DOI: https://doi.org/10.3390/coatings11040390

Eutionnat-Diffo, P. A., Chen, Y., Guan, J., Cayla, A., Campagne, C., Zeng, X., & Nierstrasz, V. (2019). Optimization of adhesion of poly lactic acid 3D printed onto polyethylene terephthalate woven fabrics through modelling using textile properties. Rapid Prototyping Journal, 26(2), 390–401. doi:10.1108/rpj-05-2019-0138. DOI: https://doi.org/10.1108/RPJ-05-2019-0138