Improving the Properties of Biodegradable PLA via Blending with Polyesters for Industrial Applications

Main Article Content

Zehra Kuru
Mehmet Arif Kaya

Abstract

Polylactic acid (PLA) is a biodegradable polymer obtained from the fermentation of renewable resources, which can also be used in industrial areas. The employment of PLA is restricted by its brittle nature at room temperature. This study, it is aimed to prepare PLA blends with PBT (Polybutylene terephthalate) to overcome this drawback. Thus, it can be provided new raw materials to many sectors, especially textile, automotive and electronic products, by preparing biodegradable, environmentally friendly materials with better performance properties. PLA/PBT blends containing 5%, 10%, and 15% PBT by weight were produced in a twin screw extruder using with using maleic anhydride grafted ethylene/butyl acrylate (EBA-g-MAH) as a compatibilizer. For comparison studies, blends of PLA/PBT without compatibilizer were also prepared. Examinations on the flow, viscoelastic properties, and rheologic characteristics of prepared samples were carried out by using Melt Flow Index values and Rotational Rheometer measurements. Mechanical and impact resistance characteristics were identified in accordance with the relevant standards. Physical properties of blends such as molding shrinkage, density, and hardness values were also determined. Degradation or cross-linking-induced changes in the chain structure was not observed during the investigation via using a rotational rheometer for PBT samples at 240 °C /15 min., and PLA samples at 260 °C /15 min. Notched izod impact test results show that adding compatibilizer increases 16% impact resistance of PLA/PBT blends. The tensile modulus values of the blends containing compatibilizer decreased by 2% approximately. These results show the transition from brittle to ductile behavior of PLA for compatibilized blends.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kuru, Z., & Kaya, M. A. (2022). Improving the Properties of Biodegradable PLA via Blending with Polyesters for Industrial Applications. The European Journal of Research and Development, 2(4), 299–318. https://doi.org/10.56038/ejrnd.v2i4.201
Section
Articles

References

R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

R.E. Drumright, P.R. Gruber, and D.E. Henton, Adv. Mater., 12, 1841 (2000). DOI: https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4 (2004) 835–864

R. Datta, M. Henry, Lactic acid: recent advances in products, processes and Technologies a review, J. Chem. Technol. Biotechnol. 81 (2006) 1119–1129. DOI: https://doi.org/10.1002/jctb.1486

J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab. 59 (1998) 145–152. DOI: https://doi.org/10.1016/S0141-3910(97)00148-1

J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335–2346. DOI: https://doi.org/10.1016/S0142-9612(00)00101-0

K.E. Perepelkin, Polylactide fibres: fabrication, properties, use, prospects. A review, Fibre Chem. 34 (2002) 85–100. DOI: https://doi.org/10.1023/A:1016359925976

Scheirs J., Long T. E.: Modern polyesters: Chemistry and technology of polyesters and copolyesters. Wiley, Chichester (2003). DOI: https://doi.org/10.1002/0470090685

Peters E. N.: Engineering thermoplastics – Materials, properties, trends. in ‘Applied plastics engineering handbook’(ed.: Kutz M.) William Andrew Publishing, Oxford, 3–26 (2016).

https://doi.org/10.1016/B978-0-323-39040-8.00001-8 DOI: https://doi.org/10.1016/B978-0-323-39040-8.00001-8

Genovese L., Lotti N., Gazzano M., Siracusa V., Dalla Rosa M., Munari A.: Novel biodegradable aliphatic copolyesters based on poly(butylene succinate) containing- thioether-linkages for sustainable food packaging applications. Polymer Degradation and Stability, 132, 191–201 (2016).

https://doi.org/10.1016/J.polymdegradstab.2016.02.022 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.02.022

Auras R., Harte B., Selke S.: An overview of polylactides as packaging materials. Macromolecular Bioscience, 4, 835–864 (2004).

https://doi.org/10.1002/mabi.200400043 DOI: https://doi.org/10.1002/mabi.200400043

Muller R-J., Kleeberg I., Deckwer W-D.: Biodegradation of polyesters containing aromatic constituents. Journal of Biotechnology, 86, 87–95 (2001).

https://doi.org/10.1016/S0168-1656(00)00407-7 DOI: https://doi.org/10.1016/S0168-1656(00)00407-7

Di Lorenzo M. L., Rubino P., Cocca M.: Isothermal and non-isothermal crystallization of poly(L-lactic acid)/ poly(butylene terephthalate) blends. Journal of Applied Polymer Science, 131, 40372/1–40372/8 (2014).

https://doi.org/10.1002/app.40372 DOI: https://doi.org/10.1002/app.40372

Santos L. G., Costa L. C., Pessan L. A.: Development of biodegradable PLA/PBT nanoblends. Journal of Applied Polymer Science, 135, 45951/1–45951/9 (2018).

https://doi.org/10.1002/app.45951

Di Lorenzo M. L., Rubino P., Cocca M.: Miscibility and properties of poly(L-lactic acid)/poly(butylene terephthalate) blends. European Polymer Journal, 49, 3309–

(2013).

https://doi.org/10.1016/j.eurpolymj.2013.06.038

T.-H. Zhao, W.-Q. Yuan, Y.-D. Li, Y.-X. Weng and J.-B. Zeng, Macromolecules, 2018, 51, 2027–2037.

Y. Chen, D. Yuan and C. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 3811–3816.

7 J. Wu, Y.-W. Mai and A. F. Yee, J. Mater. Sci., 1994, 29, 4510– 4522. DOI: https://doi.org/10.1007/BF00376274

S. L. Sun, X. Y. Xu, H. D. Yang and H. X. Zhang, Polymer, 2005, 46, 7632–7643. DOI: https://doi.org/10.1016/j.polymer.2005.06.011

D. Yuan, Z. Chen, C. Xu, K. Chen and Y. Chen, ACS Sustainable Chem. Eng., 2015, 3, 2856–2865.

M. L. Di Lorenzo, P. Rubino and M. Cocca, Eur. Polym. J., 2013, 49, 3309–3317.

O. Wachsen, K. Platkowski and K.-H. Reichert, Polym. Degrad. Stab., 1997, 57, 87–94 DOI: https://doi.org/10.1016/S0141-3910(96)00226-1

L. Yang, X. Chen and X. Jing, Polym. Degrad. Stab., 2008, 93, 1923–1929. DOI: https://doi.org/10.1016/j.polymdegradstab.2008.06.016

H. J. Lehermeier and J. R. Dorgan, Polym. Eng. Sci., 2001, 41, 2172–2184. DOI: https://doi.org/10.1002/pen.10912

Y. Yuryev, A. K. Mohanty and M. Misra, RSC Adv., 2016, 6, 105094–105104. DOI: https://doi.org/10.1039/C6RA21208E

G. M. Roudsari, A. K. Mohanty and M. Misra, ACS Omega, 2017, 2, 611–617. DOI: https://doi.org/10.1021/acsomega.6b00458

Y. Chen, W. Wang, D. Yuan, C. Xu, L. Cao and X. Liang, ACS Sustainable Chem. Eng., 2018, 6, 6488–6496. DOI: https://doi.org/10.1021/acssuschemeng.8b00267

T.-H. Zhao, W.-Q. Yuan, Y.-D. Li, Y.-X. Weng and J.-B. Zeng, Macromolecules, 2018, 51, 2027–2037. DOI: https://doi.org/10.1021/acs.macromol.8b00103

Y. Chen, D. Yuan and C. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 3811–3816 DOI: https://doi.org/10.1021/am5004766

D. Yuan, Z. Chen, C. Xu, K. Chen and Y. Chen, ACS Sustainable Chem. Eng., 2015, 3, 2856–2865. DOI: https://doi.org/10.1021/acssuschemeng.5b00788

O. Valerio, J. M. Pin, M. Misra and A. K. Mohanty, ACS Omega, 2016, 1, 1284–1295. DOI: https://doi.org/10.1021/acsomega.6b00325

V. Ojijo and S. S. Ray, Polymer, 2015, 80, 1–17. DOI: https://doi.org/10.1016/j.polymer.2015.10.038

N. Zhang, C. Zeng, L. Wang and J. Ren, J. Polym. Environ., 2013, 21, 286–292. DOI: https://doi.org/10.1007/s10924-012-0448-z

M. L. Di Lorenzo, P. Rubino and M. Cocca, Eur. Polym. J., 2013, 49, 3309–3317. DOI: https://doi.org/10.1016/j.eurpolymj.2013.06.038

M. W. Kim, S. M. Hong, D. Lee, K. Park, T. J. Kang and J. R. Youn, Adv. Compos. Mater., 2010, 19, 331–348. DOI: https://doi.org/10.1163/092430409X12605406698471

J. Zhou, Z. Jiang, Z. Wang, J. Zhang, J. Li, Y. Li, J. Zhang, P. Chen and Q. Gu, RSC Adv., 2013, 3, 18464–18473. DOI: https://doi.org/10.1039/c3ra42096e

L. G. Santos, L. C. Costa and L. A. Pessan, J. Appl. Polym. Sci., 2018, 135, 45951. DOI: https://doi.org/10.1002/app.45951