A Review of Breathable Walls and Breathable Paints: Innovations and Sustainability in Building Materials
Main Article Content
Abstract
Today's construction industry, are continuous focus on well-designed buildings, with innovation and technology being embraced to meet the evolving demands of modern living standards. Challenges such as urbanization and resource depletion have made it imperative to develop innovative, eco-friendly solutions that not only reduce environmental impact but also enhance indoor environmental quality (IEQ). In this context, breathable walls (BWs) and breathable paints (BPs) have emerged as promising solutions.
Breathable walls (BWs) and breathable paints (BPs), incorporating advanced formulation techniques, natural additives, and innovative application methods, address both environmental and health concerns by improving indoor air quality (IAQ), regulating moisture, and enhancing energy efficiency. By maintaining optimal humidity levels and preventing mold growth, breathable walls and breathable paints contribute to healthier and more comfortable living spaces. Additionally, they reduce reliance on heating, ventilation, and air conditioning (HVAC) systems, minimizing energy consumption and shrinking carbon footprints. Furthermore, these materials support sustainable building practices and promote the use of renewable, non-toxic substances, thereby facilitating the transition to a circular economy.
Future research should focus on optimizing the performance of these materials in response to changing environmental conditions. It is anticipated that the construction industry will continue to innovate and develop health-conscious, more energy-efficient, and sustainable building materials to meet the growing demand for eco-friendly solutions. These advancements will not only contribute to global environmental sustainability, mitigate worldwide environmental challenges, and improve indoor environmental quality, but also enhance occupant well-being.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Alene, K. A., Wangdi, K., & Clements, A. C. (2020). Impact of the COVID-19 pandemic on tuberculosis control: An overview. Tropical Medicine and Infectious Disease, 5, 123. https://doi.org/10.3390/tropicalmed5030123. DOI: https://doi.org/10.3390/tropicalmed5030123
Eltarabily, S., & Elghezanwy, D. (2020). Post-pandemic cities—the impact of COVID-19 on cities and urban design. Architecture Research, 10, 75–84. https://doi.org/10.5923/j.arch.20201003.02.
Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., Kumar, A., Balam, N. B., Alam, T., & Kapoor, N. R. (2021). Indoor air quality improvement in COVID-19 pandemic. Sustainable Cities and Society, 70, 102942. https://doi.org/10.1016/j.scs.2021.102942. DOI: https://doi.org/10.1016/j.scs.2021.102942
Megahed, N. A., & Ghoneim, E. M. (2021). Indoor air quality: Rethinking rules of building design strategies in post-pandemic architecture. Environmental Research, 193, 110471. https://doi.org/10.1016/j.envres.2020.110471. DOI: https://doi.org/10.1016/j.envres.2020.110471
Gabor, K., & Tideren, T. (2000). Breathing walls: A challenge for new sustainable building techniques in Hungary. Building Industry Trends, 123, 10281–10287.
Swanson, G., Miller, O., & Federer, W. (2008). Breathing walls, biological approach to healthy building envelope design and construction. In Book.
Abo-Elazm, F., & Ali, S. (2017). The concept of local smart architecture: An approach to appropriate local sustainable buildings. International Journal of Cultural Heritage, 2, 1–12.
U.S. Environmental Protection Agency. (2024). Green building. Available at: https://www.epa.gov/smartgrowth/green-building (accessed November 27, 2024).
Leech, J. A., Nelson, W. C., Burnett, R. T., Aaron, S., & Raizenne, A. M. E. (2002). It’s about time: A comparison of Canadian and American time–activity patterns. Journal of Exposure Science & Environmental Epidemiology, 12, 427–432. DOI: https://doi.org/10.1038/sj.jea.7500244
Rickenbacker, H. J., Collinge, W. O., Hasik, V., Ciranni, A., Smith, I., Colao, P., Sharrard, A. L., & Bilec, M. M. (2020). Development of a framework for indoor air quality assessments in energy conservation districts. Sustainable Cities and Society, 52, 101831. https://doi.org/10.1016/j.scs.2019.101831. DOI: https://doi.org/10.1016/j.scs.2019.101831
Zhao, Y., Sun, H., & Tu, D. (2018). Effect of mechanical ventilation and natural ventilation on indoor climates in Urumqi residential buildings. Building and Environment, 144, 108–118. https://doi.org/10.1016/j.buildenv.2018.08.021. DOI: https://doi.org/10.1016/j.buildenv.2018.08.021
Liu, J., Dai, X., Li, X., Jia, S., Pei, J., Sun, Y., Lai, D., Shen, X., Sun, H., & Yin, H. (2018). Indoor air quality and occupants' ventilation habits in China: Seasonal measurement and long-term monitoring. Building and Environment, 142, 119–129. https://doi.org/10.1016/j.buildenv.2018.06.002. DOI: https://doi.org/10.1016/j.buildenv.2018.06.002
Homod, R. Z., & Sahari, K. S. M. (2013). Energy savings by smart utilization of mechanical and natural ventilation for hybrid residential building model in passive climate. Energy and Buildings, 60, 310–329. https://doi.org/10.1016/j.enbuild.2012.10.034. DOI: https://doi.org/10.1016/j.enbuild.2012.10.034
Schieweck, A., Uhde, E., Salthammer, T., Salthammer, L. C., Morawska, L., Mazaheri, M., & Kumar, P. (2018). Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews, 94, 705–718. DOI: https://doi.org/10.1016/j.rser.2018.05.057
Abdulaali, H. S., Hanafiah, M. M., Usman, I. M., Nizam, N. U. M., & Abdulhasan, M. J. (2020). A review on green hotel rating tools, indoor environmental quality (IEQ) and human comfort. 29, 128–157.
Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience, and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669. https://doi.org/10.1016/j.rser.2020.110669. DOI: https://doi.org/10.1016/j.rser.2020.110669
Osman, M., Ibrahim, H., Yousef, F., Elnasr, A. A., Saeed, Y., & Hameed, A. A. (2018). A study on microbiological contamination on air quality in hospitals in Egypt. Indoor and Built Environment, 27, 953–968. DOI: https://doi.org/10.1177/1420326X17698193
Wagdi, D. (2015). Effect of building materials on indoor air quality in residential buildings in Egypt: A preoccupancy assessment.
Filli Boya®. (n.d.). Momento Life® Sağlığa duyarlı boyalar.
Retrieved from https://www.filliboya.com/urunler/sagliga-duyarli-boyalar
Filli Boya®. (n.d.). Momento Life® Sağlığa duyarlı boyalar [PDF].
Retrieved from https://www.filliboya.com/uploads/Momento_Life.pdf
Filli Boya®. (n.d.). Momento Life Kids® [PDF].
Retrieved from https://www.filliboya.com/uploads/Momento_Life_Kids.pdf
Filli Boya®. (n.d.). Momento Life Clean [PDF].
Retrieved from https://www.filliboya.com/uploads/Momento_Life_Clean.pdf
Filli Boya®. (n.d.). Momento Life Shield [PDF].
Retrieved from https://www.filliboya.com/uploads/Momento_Life_Shield.pdf
Nippon Paint®. (n.d.). Minoa Sağlıklı Ürün Serisi®.
Retrieved from https://nipponboya.com/tr/urunler/minoa-saglikli-urun-serisi.
Nippon Paint®. (n.d.). Nippon Paint Minoa Premium Silk Matt® [PDF].
Retrieved from https://nipponboya.com/uploads/NIPPONPAINTMINOAPREMIUMSILKMATTTDS.pdf
Nippon Paint®. (n.d.). Premium Matt® [PDF].
Retrieved from https://nipponboya.com/uploads/NIPPONPAINTMINOAPREMIUMMATTTDS.pdf
Nippon Paint®. (n.d.). Premium Primer® [PDF].
Retrieved from https://nipponboya.com/uploads/NIPPONPAINTMINOAPRIMERTDS.pdf
Filli Boya®. (n.d.). Momento Plus® [PDF].
Retrieved from https://www.filliboya.com/uploads/Momento_Plus.pdf
Filli Boya®. (n.d.). Aqusto Silan®. Retrieved from https://www.filliboya.com/urun/aqusto-silan.
Filli Boya®. (n.d.). Aqusto Sil®. Retrieved from https://www.filliboya.com/urun/aqusto-sil.
Elgheznawy, D., Abou El Enein, O., Shalaby, G., & Seif, A. (2022). An experimental study of indoor air quality enhancement using breathing walls. Civil Engineering and Architecture, 10(1), 194–209. https://doi.org/10.13189/cea.2022.100117. DOI: https://doi.org/10.13189/cea.2022.100117
Wagdi, D. M. (2015). Effect of building materials on indoor air quality in residential buildings in Egypt: A pre-occupancy assessment. The American University in Cairo, Master of Science in Construction Engineering.
Elghawaby, M. (2012). Breathing façades: A new concept to create dynamic thermal ambiances in buildings located in hot climates. pp. 214–218.
Straube, J. F., & Acahrya, V. (2003). Indoor air quality, healthy buildings, and breathing walls. Green Building Source, 1-2.
Imbabi, M. S. (2004). New developments in the science and art of breathing walls. pp. 1–6.
Craig, S., & Grinham, J. (2017). Breathing walls: The design of porous materials for heat exchange and decentralized ventilation. Energy and Buildings, 149, 246-259, 247-256. DOI: https://doi.org/10.1016/j.enbuild.2017.05.036
Brown, A. (2017). Breathing space. Building Surveying Journal, 31–33.
Imbabi, M. S., & Peacock, A. (2003). Smart breathing walls for integrated ventilation, heat exchange, energy efficiency & air filtration. pp. 2–5.
Filli Boya®. (n.d.). Momento Plus® [PDF].
Retrieved from https://www.filliboya.com/uploads/Momento_Plus.pdf.
Filli Boya®. (n.d.). Aqusto Silan® [PDF].
Retrieved from https://www.filliboya.com/uploads/Aqusto_Silan.pdf.
Filli Boya®. (n.d.). Aqusto Sil® [PDF].
Retrieved from https://www.filliboya.com/uploads/Aqusto_Sil.pdf.
Dalmaçyalı®. (n.d.). Isı yalıtım sistemleri broşürü [PDF]. Retrieved from
https://detar.dalmacyali.com.tr/uploads/DALMACYALI-ISI-YALITIM-SISTEM-BROSUR.pdf
Dalmaçyalı®. (n.d.). Ideal Carbon Sistem®. Retrieved from
Dalmaçyalı®. (n.d.). Stonewool Taş Yünü Sistem. Retrieved from
Dalmaçyalı®. (n.d.). Double Carbon Sistem. Retrieved from
Crump, D., Dengel, A., & Swainson, M. (2009). Indoor air quality in highly energy efficient homes – A review (NHBC Foundation NF18 IHS). BRE Press.
Alongi, A., Angelotti, A., & Mazzarella, L. (2020). Experimental validation of a steady periodic analytical model for breathing walls. Building and Environment, 168, 106509. https://doi.org/10.1016/j.buildenv.2019.106509. DOI: https://doi.org/10.1016/j.buildenv.2019.106509
Alongi, A., Angelotti, A., & Mazzarella, L. (2017). Analytical modelling of breathing walls: Experimental verification by means of the Dual Air Vented Thermal Box lab facility. Energy Procedia, 140, 36–47. DOI: https://doi.org/10.1016/j.egypro.2017.11.121
Alongi, A., Angelotti, A., & Mazzarella, L. (2017). Experimental investigation of the steady state behaviour of breathing walls by means of a novel laboratory apparatus. Building and Environment, 123, 415–426. https://doi.org/10.1016/j.buildenv.2017.07.013. DOI: https://doi.org/10.1016/j.buildenv.2017.07.013
Swanson, G., Miller, O., & Federer, W. (2008). Breathing walls, biological approach to healthy building envelope design and construction. In Book.
Imbabi, M. (2004). New developments in the science and art of breathing walls. Invited Speaker, Proceedings of WREC-VIII, Denver.
May, N. (2012). Breathability: The key to building performance.
Minke, G. (2005). Building with earth: Design and technology of a sustainable architecture. Birkhäuser Publishers for Architecture Basel Berlin Boston.
Bui, Q. (2008). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5), 9–12. DOI: https://doi.org/10.1016/j.buildenv.2008.07.001
Kumar, A., & Pushplata. (2013). Vernacular practices: As a basis for formulating building regulations for hilly areas. International Journal of Sustainable Built Environment, 2(2), 183–192. DOI: https://doi.org/10.1016/j.ijsbe.2014.01.001
Ciurileanu, G. T., & Bucur Horvath, I. (2012). Modular building using rammed earth. Acta Technica Napocensis: Civil Engineering & Architecture, 55(2), 173–181.
Bui, Q., Morel, J. C., Hans, S., & Meunier, S. (2009). Compression behaviour of non-industrial materials in civil engineering by three scale experiments: The case of rammed earth. Materials and Structures, 42(8), 1101–1116. DOI: https://doi.org/10.1617/s11527-008-9446-y
Suciu, M. C., & Suciu, N. (2007). Dezvoltarea sustenabila - Problema cheie a secolului XXI. Buletinul AGIR, 1, 124–125.
Vural, N., Vural, S., Engin, N., & Sumerkan, M. R. (2007). Eastern Black Sea region: A sample of modular design in the vernacular architecture. Building and Environment, 42(7), 2746–2761. DOI: https://doi.org/10.1016/j.buildenv.2006.07.017
Karim, M. D. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. DOI: https://doi.org/10.1016/j.egypro.2011.10.120
Asdrubali, F., D'Alessandro, F., & Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4(July), 1–17. DOI: https://doi.org/10.1016/j.susmat.2015.05.002
Călătan, G. A., & Dico, C. (2022). Environmentally friendly building materials with beneficial potential for indoor air quality. Athens Journal of Technology & Engineering, 9(4), 305–320. https://www.athensjournals.gr/technology/2022-9-4-3-Calatan.pdf. DOI: https://doi.org/10.30958/ajte.9-4-3
Călătan, G., Hegyi, A., & Dico, C. (2016). Adobe bricks constructions: Past experience, the base of the contemporary buildings. In Proceedings of the 16th International Multidisciplinary Scientific GeoConference & EXPO – SGEM 2016, Section Green Buildings Technologies and Materials, 28 June - 7 July 2016, Albena, Bulgaria.
Călătan, G., Hegyi, A., Dico, C., & Mircea, C. (2015). Additives influence on the earth characteristics used in vernacular construction. Ecoterra - Journal of Environmental Research and Protection, 12(1), 7–20.
Abdou, A., & Budaiwi, I. (2013). The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content. Construction and Building Materials, 43(June), 533–544. DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.058
Adams, T. (2017). Sound material – A compendium of sound absorbing materials for architecture and design. Tyler Adam.
Iscen, A., Forero-Martinez, N. C., Valsson, O., & Kremer, K. (2021). Acrylic paints: An atomistic view of polymer structure and effects of environmental pollutants. The Journal of Physical Chemistry B, 125(38), 10854–10865. https://doi.org/10.1021/acs.jpcb.1c05188. DOI: https://doi.org/10.1021/acs.jpcb.1c05188
Filli Boya®. (n.d.). Betakril® [PDF]. Retrieved from
https://www.filliboya.com/uploads/Betakril.pdf.
Filli Boya®. (n.d.). Expert Akrilik Dış Cephe Boyası®
Retrieved from https://www.filliboya.com/urun/expert-akrilik-dis-cephe-boyasi
Dalmaçyalı®. (n.d.). Organic silikonlu kaplama ince tane doku. Retrieved from
Rahmadina, M., & Kusuma, N. R. (2019). Wall finishing materials and heritage science in the adaptive reuse of Jakarta heritage buildings. IOP Conference Series: Materials Science and Engineering, 523(1), 012055. https://doi.org/10.1088/1757-899X/523/1/012055. DOI: https://doi.org/10.1088/1757-899X/523/1/012055
Giosuè, C., Belli, A., Mobili, A., Citterio, B., Biavasco, F., Ruello, M. L., & Tittarelli, F. (2017). Improving the impact of commercial paint on indoor air quality by using highly porous fillers. Buildings, 7(4), 110. https://doi.org/10.3390/buildings7040110. DOI: https://doi.org/10.3390/buildings7040110
Filli Boya®. (n.d.). Nucleus® – Koruma etkili dış cephe boyası.
Retrieved from https://www.filliboya.com/urun/nucleus.
Filli Boya®. (n.d.). Nucleus® – Technical data sheet [PDF].
Retrieved from https://www.filliboya.com/uploads/TDS_Nucleus.pdf.