UWB-Based High-Precision Real-Time Positioning and Multi-Dimensional Visualization

Main Article Content

Onur Yılmaz
Turgut Aydoğdu
Hasan Berkhan Özkan
Savas Barış
Yusuf Kaya

Abstract

This study presents a high-precision indoor positioning and multi-dimensional visualization system, named Virtual Positioning System (VPS), which utilizes Ultra-Wideband (UWB) technology. The VPS features an integrated architecture comprising portable Tag devices, fixed anchor units, a data collector called Position Box, and a web-based server. Tests conducted in various scenarios (office, factory, and retail environments) demonstrated that the system achieves a positioning accuracy of ±30 cm and provides high data stability.


The Two-Way Ranging (TWR) algorithm and Kalman filter minimize measurement noise, while IEEE 802.3-based communication prevents data loss. The 2D and 3D visualization modules provide capabilities for movement tracking, density mapping, and area-based analysis. In particular, 3D visualization enhances operational awareness by providing depth perception in multi-story buildings or metal-dense environments. The VPS is well-suited for future developments in terms of energy efficiency, signal stability, and visualization performance, adding value to industrial, corporate, and security-focused operations.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yılmaz, O., Aydoğdu, T., Özkan, H. B., Barış, S., & Kaya, Y. (2025). UWB-Based High-Precision Real-Time Positioning and Multi-Dimensional Visualization. The European Journal of Research and Development, 5(1), 390–406. https://doi.org/10.56038/ejrnd.v5i1.721
Section
Articles

References

Vaccari, L., Porporato, C., & Mattiazzo, S. (2024). Indoor Positioning Systems in Logistics: A Review. Infrastructures, 9(4), 126. DOI: https://doi.org/10.3390/logistics8040126

Zafari, F., Gkelias, A., & Leung, K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials. DOI: https://doi.org/10.1109/COMST.2019.2911558

Guilbeault-Sauvé, A., De Kelper, B., & Voix, J. (2021). Man Down Situation Detection Using an in-Ear Inertial Platform. Sensors, 21(5), 1730. [https://doi.org/10.3390/s21051730] DOI: https://doi.org/10.3390/s21051730

Sysnav. (2025, October 23). Man-down device and lone worker protection system. [https://www.sysnav.fr/man-down-device-and-lone-worker-protection-system]

Court of Justice of the European Union. (2019, May 14). Judgment of the Court (Grand Chamber) in Case C-55/18, Federación de Servicios de Comisiones Obreras (CCOO) v Deutsche Bank SAE. ECLI:EU:C:2019:402.

Al-Okby, M. F. R., et al. (2024). UWB-Based Real-Time Indoor Positioning Systems: A Comprehensive Review. Applied Sciences, 14(23), 11005. [https://doi.org/10.3390/app142311005]

A workload prediction model for 3D textured meshes in WebGL context. (SSRN preprint). [https://doi.org/10.2139/ssrn.4797467] DOI: https://doi.org/10.2139/ssrn.4797467

Veloz, J. L., Intriago, L. S., Palma, J. C., Alcívar-Cedeño, A. K., Antón-Sacho, Á., Fernández-Arias, P., Ariza, E. A., & Vergara, D. (2025). Offline system for 2D indoor navigation utilizing advanced data structures. Informatics, 12(2), 34. [https://doi.org/10.3390/informatics12020034] DOI: https://doi.org/10.3390/informatics12020034

Seo, Y., Choi, Y. S., Son, H. S., & Uh, Y. (2024). FLoD: Integrating flexible level of detail into 3D Gaussian splatting for customizable rendering. arXiv preprint arXiv:2408.12894. [https://doi.org/10.48550/arXiv.2408.12894] DOI: https://doi.org/10.1145/3731430

Montorsi, F., Pancaldi, F., & Vitetta, G. M. (2012). Statistical characterization and mitigation of NLOS bias in UWB localization systems. arXiv preprint arXiv:1203.2890. DOI: https://doi.org/10.1109/ICUWB.2011.6058928

Chen, Y., Zhao, D., & Zhang, W. (2024). Power-efficient indoor localization using adaptive channel-aware UWB DL-TDOA. arXiv preprint arXiv:2402.10515. https://doi.org/10.48550/arXiv.2402.10515

Hajiakhondi-Meybodi, Z., Hou, M., & Mohammadi, A. (2022). JUNO: Jump-Start Reinforcement Learning-based Node Selection for UWB Indoor Localization. arXiv preprint arXiv:2205.08422. [https://arxiv.org/abs/2205.08422] DOI: https://doi.org/10.1109/GLOBECOM48099.2022.10001559

Singh, R., & Kumar, A. (2024). UWB-based real-time indoor positioning systems: A comprehensive review. Applied Sciences, 14(23), 11005. [https://doi.org/10.3390/app142311005] DOI: https://doi.org/10.3390/app142311005