A Data Fusion Method Combining Image, Sensor, and Survey Data for Efficiency and Usability Analysis of Electric Power Tools in Industrial Environments
Main Article Content
Abstract
The increasing integration of advanced technologies and automation in industrial production has heightened the importance of operational efficiency and safety. Among the critical components influencing workforce performance and product quality is the effective use of electric hand tools. However, the limited availability of comprehensive datasets and the absence of robust labeling methodologies present significant challenges for accurate data analysis and predictive modeling. This study addresses these limitations by incorporating field-collected data and multiple data acquisition techniques to identify relevant features for machine learning applications. An initial dataset comprising 51 attributes was systematically reduced to 16 through feature selection processes, enhancing its suitability for subsequent computational modeling. Several classification algorithms were evaluated for data labeling, with the Decision Tree method demonstrating superior performance in terms of accuracy. Despite these promising results, the dataset’s limited sample size (64 individuals) restricts the generalizability and reliability of machine learning outcomes. To mitigate this constraint, data augmentation techniques will be employed to generate synthetic instances, thereby expanding the dataset. Upon achieving a sufficient sample size, machine learning models will be developed to predict individuals’ proficiency with electric hand tools. This research contributes to the foundational knowledge required for efficient data collection, accurate labeling, and the development of predictive models in industrial settings.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Krushnasamy, V. S., & Rashinkar, P. (2017). An overview of data fusion techniques. In *2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA)* (pp. 694–697). IEEE. DOI: https://doi.org/10.1109/ICIMIA.2017.7975553
Chen, X., Chen, C., & Lu, X. (2024). Algebraic method for multisensor data fusion. *PLOS ONE, 19*(9), e0307587. DOI: https://doi.org/10.1371/journal.pone.0307587
Zhang, X., Wang, J., Huang, Y., & Zhu, F. (2024). A novel industrial big data fusion method based on Q-learning and cascade classifier. *Computer Science and Information Systems, 21*(4), 1629–1649. DOI: https://doi.org/10.2298/CSIS240314051Z
Zhang, Q., Zhang, Y., Bao, F., Ning, Y., Zhang, C., & Liu, P. (2025). Graph-based stock prediction with multisource information and relational data fusion. *Information Sciences, 690*, 121561. DOI: https://doi.org/10.1016/j.ins.2024.121561
Adade, S. Y.-S. S., Lin, H., Johnson, N. A. N., Nunekpeku, X., Aheto, J. H., Ekumah, J.-N., ... Chen, Q. (2025). Advanced food contaminant detection through multi-source data fusion: Strategies, applications, and future perspectives. *Trends in Food Science & Technology, 156*, 104851. DOI: https://doi.org/10.1016/j.tifs.2024.104851
Niu, Y., Li, Z., Li, J., & Sun, B. (2025). Accelerometer-assisted computer vision data fusion framework for structural dynamic displacement reconstruction. *Measurement, 242*, 116021. DOI: https://doi.org/10.1016/j.measurement.2024.116021
Çengiz, B., & Daş, R. (2022). Veri füzyonu: Veri kaynakları, mimariler, zorluklar ve çözüm yaklaşımları. *Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 34*(2), 899–922.
Oltrogge, D., & Kerr, E. (2024). Space traffic management: Data fusion. *Acta Astronautica.* DOI: https://doi.org/10.1016/j.actaastro.2024.08.056
Er, A. G., Ding, D. Y., Er, B., Uzun, M., Cakmak, M., Sadee, C., ... Gevaert, O. (2024). Multimodal data fusion using sparse canonical correlation analysis and cooperative learning: A COVID-19 cohort study. * Digital Medicine, 7*, 117. DOI: https://doi.org/10.1038/s41746-024-01128-2
Xia, X., Zhu, C., Zhong, F., & Liu, L. (2024). TransCDR: A deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion. *BMC Biology, 22*, 227. DOI: https://doi.org/10.1186/s12915-024-02023-8
Peng, Y., Zhang, W., Chen, X., Li, T., & Wang, H. (2025). Multi-source data fusion for intelligent diagnosis based on generalized representation. *Expert Systems with Applications, 228*, 121968. DOI: https://doi.org/10.1016/j.eswa.2024.126267
Bhowmik, T., Iraganaboina, N. C., & Eluru, N. (2024). A novel maximum likelihood based probabilistic behavioral data fusion algorithm for modeling residential energy consumption. *PLOS ONE, 19*(11). DOI: https://doi.org/10.1371/journal.pone.0309509
Anand, S., & Sonkar, S. K. (2024). Multi-source data fusion for wind farm power forecasting through AI. *Journal of the Balkan Tribological Association, 30*(3), 439–450.
O’Regan, A. C., Grythe, H., Hellebust, S., Lopez-Aparicio, S., O’Dowd, C., Hamer, P. D., ... Nyhan, M. M. (2024). Data fusion for enhancing urban air quality modeling using large-scale citizen science data. *Sustainable Cities and Society, 116*, 105896. DOI: https://doi.org/10.1016/j.scs.2024.105896
Yang, R., Zhang, Y., Wei, Q., Liu, F., & Li, K. (2024). Comparison of two data fusion methods from Sentinel-3 and Himawari-9 data for snow cover monitoring in mountainous areas. *Research in Cold and Arid Regions.* DOI: https://doi.org/10.1016/j.rcar.2024.12.010
Qian, X., Xu, L., & Cui, X. (2024). Steady-state detection of evaporation process based on multivariate data fusion. *PLOS ONE, 19*(9). DOI: https://doi.org/10.1371/journal.pone.0309652
Chen, F., Shang, D., Zhou, G., Ye, K., & Wu, G. (2024). Multi-source data fusion for vehicle maintenance project prediction. *Future Internet, 16*, 371. DOI: https://doi.org/10.3390/fi16100371
Wang, C., Yao, J., Zhang, X., Wu, Y., Liu, X., Liu, H., ... Xin, J. (2024). Fatigue life data fusion method of different stress ratios based on strain energy density. *Materials, 17*, 2982. DOI: https://doi.org/10.3390/ma17122982
Khaleghi, B., Razavi, S. N., Khamis, A., Karray, F. O., & Kamel, M. (2009). Multisensor data fusion: Antecedents and directions. In *2009 International Conference on Signals, Circuits and Systems*. IEEE. DOI: https://doi.org/10.1109/ICSCS.2009.5412296
Zou, X., Yan, Y., Hao, X., Hu, Y., Wen, H., Liu, E., ... Liang, Y. (2025). Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlook. *Information Fusion, 113*, 102606. DOI: https://doi.org/10.1016/j.inffus.2024.102606