A Review of Deep Learning Approaches with CMR Images in the Diagnosis of Cardiovascular Diseases

Main Article Content

Gülsüm Kemerli
Tayyip Özcan

Abstract

Cardiovascular disease (CVD) is one of the leading causes of death worldwide, which has led to the recent intensification of Deep Learning (DL) studies in the field of cardiology. Patients usually experience symptoms such as rapid fatigue, edema below the knee and ankle, chest pain, shortness of breath, and palpitations. The most common types of CVD include coronary artery disease, arrhythmias, congenital heart defects, cardiomyopathy, valvular heart failure, and angina. Electrocardiography (ECG), blood tests, physical examination, and medical imaging are the most effective tools for diagnosing diseases.   In recent years, cardiac magnetic resonance imaging (CMRI) has been increasingly used for the diagnosis, follow-up, treatment planning, and prognosis of CVDs. However, the large number of slices and low contrast of CMRI data make diagnosing CVD difficult. Deep learning techniques are being applied to diagnose CVD with CMRI data to overcome these difficulties, and intensive research continues to be conducted in this field. It is important to keep abreast of developments so that these studies can significantly impact clinical applications. This review aims to be a stepping stone for researchers in this process by comprehensively reviewing studies on CVD detection using DL methods on CMRI images.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kemerli, G., & Özcan, T. . (2025). A Review of Deep Learning Approaches with CMR Images in the Diagnosis of Cardiovascular Diseases. The European Journal of Research and Development, 5(1), 52–67. https://doi.org/10.56038/ejrnd.v5i1.635
Section
Articles

References

A. Ammari, R. Mahmoudi, B. Hmida, R. Saouli, M.H. Bedoui, A review of approaches investigated for right ventricular segmentation using short-axis cardiac MRI, IET Image Proc. 15 (9) (2021) 1845-1868. DOI: https://doi.org/10.1049/ipr2.12165

Akalın, B. and Veranyurt, U. Artificial intelligence in health services and management. ActaInfologica, 2021, 5(1), 231-240. DOI: https://doi.org/10.26650/acin.750857

A. Andreopoulos, J.K. Tsotsos, Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI, Med. Image Anal. 12 (3) (2008) 335-357. DOI: https://doi.org/10.1016/j.media.2007.12.003

P. Radau, Y. Lu, K. Connelly, G. Paul, A.J.W.G. Dick, G. Wright, Evaluation framework for algorithms segmenting short axis cardiac MRI, The MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge 49 (2009). DOI: https://doi.org/10.54294/g80ruo

A. Fuchs, J.T. Kühl, J. Lønborg, T. Engstrøm, N. Vejlstrup, L. Køber, K.F. Kofoed, Automated assessment of heart chamber volumes and function in patients with previous myocardial infarction using multidetector computed tomography, J. Cardiovas. Comp. Tomograph. 6 (5) (2012) 325-334. DOI: https://doi.org/10.1016/j.jcct.2012.01.006

A. Mortazi, R. Karim, K. Rhode, J. Burt, U. Bagci, CardiacNET: segmentation of left atrium and proximal pulmonary veins from MRI using multi-view CNN, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2017, September, pp. 377-385. DOI: https://doi.org/10.1007/978-3-319-66185-8_43

A. Shoeibi, M. Khodatars, M. Jafari, N. Ghassemi, P. Moridian, R. Alizadesani, J. M. Gorriz, Diagnosis of Brain Diseases in Fusion of Neuroimaging Modalities Using Deep Learning: A review.Information Fusion, 2022. DOI: https://doi.org/10.1016/j.inffus.2022.12.010

D. Bank, N. Koenigstein, R. Giryes, Autoencoders, 2020 arXiv preprint arXiv: 2003.05991.

A.H. Kadish, D. Bello, J.P. Finn, R.O. Bonow, A. Schaechter, H. Subacius, J. J. Goldberger, Rationale and design for the defibrillators to reduce risk by magnetic resonance imaging evaluation (DETERMINE) trial, J. Cardiovasc. Electrophysiol. 20 (9) (2009) 982-987. DOI: https://doi.org/10.1111/j.1540-8167.2009.01503.x

Q. Huang, E.Z. Chen, H. Yu, Y. Guo, T. Chen, D. Metaxas, S. Sun, Measure Anatomical Thickness from Cardiac MRI with Deep Neural Networks, 2020 arXiv preprint arXiv:2008.11109. DOI: https://doi.org/10.1007/978-3-030-68107-4_5

S. Niyas, S.J. Pawan, M.A. Kumar, J. Rajan, Medical image segmentation with 3D convolutional neural networks: a survey, Neurocomputing 493 (2022) 397-413. DOI: https://doi.org/10.1016/j.neucom.2022.04.065

A. Shoeibi, N. Ghassemi, R. Alizadehsani, M. Rouhani, H. Hosseini-Nejad, A. Khosravi, S. Nahavandi, A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals, Expert Syst. Appl. 163 (2021), 113788. DOI: https://doi.org/10.1016/j.eswa.2020.113788

Savioli N, Vieira MS, Lamata P, Montana G. A generative adversarial model for right ventricle segmentation. arxiv (2018) abs/1810.03969.

B. Jiang, N. Guo, Y. Ge, L. Zhang, M. Oudkerk, X. Xie, Development and application of artificial intelligence in cardiac imaging, Br. J. Radiol. 93 (1113) (2020), 20110812. DOI: https://doi.org/10.1259/bjr.20190812

A.K. Savaashe, N.V. Dharwadkar, A Review on Cardiac Image Segmentation. In2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), IEEE, 2019, March, pp. 545-550. DOI: https://doi.org/10.1109/ICCMC.2019.8819683

L. Li, V.A. Zimmer, J.A. Schnabel, X. Zhuang, Medical Image Analysis on Left Atrial LGE MRI for Atrial Fibrillation Studies: A Review, Medical Image Analysis, 2022, 102360. DOI: https://doi.org/10.1016/j.media.2022.102360

S.A. Bala, S. Kant, Deep learning-based model architectures for cardiac MRI segmentation: a Survey, Int. J. Innov. Sci. Eng. Technol. (2020) 129-135.

Y. Wu, Z. Tang, B. Li, D. Firmin, G. Yang, Recent advances in fibrosis and scar segmentation from cardiac MRI: a state-of-the-art review and future perspectives, Front. Physiol. 12 (2021). DOI: https://doi.org/10.3389/fphys.2021.709230

Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U. Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging 2019;38(4):919-31. DOI: https://doi.org/10.1109/TMI.2018.2875814

D. Mahapatra, B. Bozorgtabar, R. Garnavi, Image super-resolution using progressive generative adversarial networks for medical image analysis, Comput. Med. Imag. Graph. 71 (2019) 30-39. DOI: https://doi.org/10.1016/j.compmedimag.2018.10.005

Masih, N., Naz, H., Ahuja, S., 2021, "Multilayer perceptron based deep neural network for early detection of coronary heart disease", Health And Technology, Vol. 11, pp. 127-138 DOI: https://doi.org/10.1007/s12553-020-00509-3

Dutta, A., Batabyal, T., Basu, M., Acton, S. T., 2020, "An efficient convolutional neural network for coronary heart disease prediction", Expert Systems with Applications, Vol. 159. DOI: https://doi.org/10.1016/j.eswa.2020.113408

Alkhodari, M., Fraiwan, L., 2021, "Convolutional and recurrent neural networks for the detection of valvular hearing diseases in phonocardiogram recordings", Computer Methods and Programs in Biomedicine, Volume 200.

Alkhodari, M., Fraiwan, L., 2021, "Convolutional and recurrent neural networks for the detection of valvular hearing diseases in phonocardiogram recordings", Computer Methods and Programs in Biomedicine, Volume 200. DOI: https://doi.org/10.1016/j.cmpb.2021.105940

https://www.kaggle.com/c/second-annual-data-science-bowl.

R.S. Oakes, T.J. Badger, E.G. Kholmovski, N. Akoum, N.S. Burgon, E.N. Fish, N. F. Marrouche, Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial f ibrillation, Circulation 119 (13) (2009) 1758-1767. DOI: https://doi.org/10.1161/CIRCULATIONAHA.108.811877

E.H. Houssein, M. Hassaballah, I.E. Ibrahim, D.S. AbdElminaam, Y.M. Wazery, An automatic arrhythmia classification model based on improved marine predators algorithm and convolutions neural networks, Expert Syst. Appl. 187 (2022), 115936. DOI: https://doi.org/10.1016/j.eswa.2021.115936

C. Yuwen, L. Jiang, H. Cui, Multiple GANs guided by self-attention mechanism for automatic cardiac image segmentation, in: Thirteenth International Conference on Graphics and Image Processing (ICGIP 2021) vol. 12083, SPIE, 2022, February, pp. 509-515. DOI: https://doi.org/10.1117/12.2623153

E. Avard, I. Shiri, G. Hajianfar, H. Abdollahi, K.R. Kalantari, G. Houshmand, H. Zaidi, Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection, Comput. Biol. Med. 141 (2022), 105145. DOI: https://doi.org/10.1016/j.compbiomed.2021.105145

G. Muscogiuri, C. Martini, M. Gatti, S. Dell'Aversana, F. Ricci, M. Guglielmo, G. Pontone, Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy using 2D-multisegment LGE combined with artificial intelligence reconstruction deep learning noise reduction algorithm, Int. J. Cardiol. 343 (2021) 164-170. DOI: https://doi.org/10.1016/j.ijcard.2021.09.012

J. Wei, K. Zou, Eda: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks, 2019 arXiv preprint arXiv:1901.11196. DOI: https://doi.org/10.18653/v1/D19-1670

K.H. Mortensen, D. Gopalan, B.L. Nørgaard, N.H. Andersen, C.H. Gravholt, Multimodality cardiac imaging in Turner syndrome, Cardiol. Young 26 (5) (2016) 831-841. DOI: https://doi.org/10.1017/S1047951115002735

Khare, S. K., & Bajaj, V. (2020). Time-frequency representation and convolutional neural network-based emotion recognition. IEEE transactions on neural networks and learning systems, 32(7), 2901-2909. DOI: https://doi.org/10.1109/TNNLS.2020.3008938

D.H. Kim, T. MacKinnon, Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks, Clin. Radiol. 73 (5) (2018) 439-445. DOI: https://doi.org/10.1016/j.crad.2017.11.015

L. Cai, J. Gao, D. Zhao, A review of the application of deep learning in medical image classification and segmentation, Ann. Transl. Med. 8 (11) (2020). DOI: https://doi.org/10.21037/atm.2020.02.44

Y. Ohta, H. Yunaga, S. Kitao, T. Fukuda, T. Ogawa, Detection and classification of myocardial delayed enhancement patterns on mr images with deep neural networks: a feasibility study, Radiology: Artif. Intell. 1 (3) (2019), e180061. DOI: https://doi.org/10.1148/ryai.2019180061

S.M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, M.K. Khan, Medical image analysis using convolutional neural networks: a review, J. Med. Syst. 42 (11) (2018) 1-13. DOI: https://doi.org/10.1007/s10916-018-1088-1

G. Luo, S. Dong, K. Wang, H. Zhang, Cardiac left ventricular volumes prediction method based on atlas location and deep learning, in: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2016, December, pp. 1604-1610. DOI: https://doi.org/10.1109/BIBM.2016.7822759

S. Kermani, M.G. Oghli, A. Mohammadzadeh, R. Kafieh, NF-RCNN: heart localization and right ventricle wall motion abnormality detection in cardiac MRI, Phys. Med. 70 (2020) 65-74. DOI: https://doi.org/10.1016/j.ejmp.2020.01.011

W. Zaremba, I. Sutskever, O. Vinyals, Recurrent Neural Network Regularization, 2014 arXiv preprint arXiv:1409.2329.

M. Muthulakshmi, G. Kavitha, Deep CNN with LM learning based myocardial ischemia detection in cardiac magnetic resonance images, in: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2019, July, pp. 824-827. DOI: https://doi.org/10.1109/EMBC.2019.8856838

M.S. Shaker, M. Wael, I.A. Yassine, A.S. Fahmy, Cardiac MRI view classification using autoencoder, in: 2014 Cairo International Biomedical Engineering Conference (CIBEC), IEEE, 2014, December, pp. 125-128. DOI: https://doi.org/10.1109/CIBEC.2014.7020935

W. Xue, A. Islam, M. Bhaduri, S. Li, Direct multitype cardiac indices estimation via joint representation and regression learning, IEEE Trans. Med. Imag. 36 (10) (2017) 2057-2067. DOI: https://doi.org/10.1109/TMI.2017.2709251

J. Margeta, A. Criminisi, R. Cabrera Lozoya, D.C. Lee, N. Ayache, Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition, Comput. Methods Biomech. Biomed. Eng: Imag. Visual. 5 (5) (2017) 339-349. DOI: https://doi.org/10.1080/21681163.2015.1061448

F. Liao, X. Chen, X. Hu, S. Song, Estimation of the volume of the left ventricle from MRI images using deep neural networks, IEEE Trans. Cybern. 49 (2) (2017) 495-504. DOI: https://doi.org/10.1109/TCYB.2017.2778799

B. Kong, Y. Zhan, M. Shin, T. Denny, S. Zhang, Recognizing end-diastole and end-systole frames via deep temporal regression network, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2016, October, pp. 264-272. DOI: https://doi.org/10.1007/978-3-319-46726-9_31

L.R. Medsker, L.C. Jain, Recurrent neural networks, Design and Appl. 5 (2001) 64-67.

M. Komatsu, A. Sakai, R. Komatsu, R. Matsuoka, S. Yasutomi, K. Shozu, R. Hamamoto, Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning, Appl. Sci. 11 (1) (2021) 371. DOI: https://doi.org/10.3390/app11010371

B. Pu, N. Zhu, K. Li, S. Li, Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework, Future Generat. Comput. Syst. 115 (2021) 825-836. DOI: https://doi.org/10.1016/j.future.2020.09.014

F. Isensee, P.F. Jaeger, P.M. Full, I. Wolf, S. Engelhardt, K.H. Maier-Hein, Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features, in: International Workshop on Statistical Atlases and Computational Models of the Heart, Springer, Cham, 2017, September, pp. 120-129. DOI: https://doi.org/10.1007/978-3-319-75541-0_13

S.H. Wang, G. McCann, I. Tyukin, Myocardial infarction detection and quantification based on a convolution neural network with online error correction capabilities, in: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020, July, pp. 1-8. DOI: https://doi.org/10.1109/IJCNN48605.2020.9207090

H. Zhou, L. Li, Z. Liu, K. Zhao, X. Chen, M. Lu, J. Tian, Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images, Eur. Radiol. (2020) 1-10. DOI: https://doi.org/10.1007/s00330-020-07454-9

X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical imaging: a review, Med. Image Anal. 58 (2019), 101552. DOI: https://doi.org/10.1016/j.media.2019.101552

Q. Tan, M. Ye, A.J. Ma, B. Yang, T.C.F. Yip, G.L.H. Wong, P.C. Yuen, Explainable uncertainty-aware convolutional recurrent neural network for irregular medical time series, IEEE Transact. Neural Networks Learn. Syst. 32 (10) (2020) 4665-4679. DOI: https://doi.org/10.1109/TNNLS.2020.3025813

O. Dekhil, F. Taher, F. Khalifa, G. Beache, A. Elmaghraby, A. El-Baz, A novel fully automated CAD system for left ventricle volume estimation, in: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), IEEE, 2018, December, pp. 602-606. DOI: https://doi.org/10.1109/ISSPIT.2018.8642754

P. Moridian, A. Shoeibi, M. Khodatars, M. Jafari, R.B. Pachori, A. Khadem, S. H. Ling, Automatic diagnosis of sleep apnea from biomedical signals using artificial intelligence techniques: methods, challenges, and future works, Rev: Data Min. Knowl. Discov. 12 (6) (2022) e1478. DOI: https://doi.org/10.1002/widm.1478

N. Tajbakhsh, L. Jeyaseelan, Q. Li, J.N. Chiang, Z. Wu, X. Ding, Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation, Med. Image Anal. 63 (2020), 101693. DOI: https://doi.org/10.1016/j.media.2020.101693

C. Petitjean, M.A. Zuluaga, W. Bai, J.N. Dacher, D. Grosgeorge, J. Caudron, J. Yuan, Right ventricle segmentation from cardiac MRI: a collation study, Med. Image Anal. 19 (1) (2015) 187-202. DOI: https://doi.org/10.1016/j.media.2014.10.004

H.R. Boveiri, R. Khayami, R. Javidan, A. Mehdizadeh, Medical image registration using deep neural networks: a comprehensive review, Comput. Electr. Eng. 87 (2020), 106767. DOI: https://doi.org/10.1016/j.compeleceng.2020.106767

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2019.

Das P, Pal C, Acharyya A, Chakrabarti A, Basu S. Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images. Comput Methods Programs Biomed 2021;205:106074. DOI: https://doi.org/10.1016/j.cmpb.2021.106074

Das R, Turkoglu I, Sengur A. Diagnosis of valvular heart disease through neural networks ensembles. Comput Methods Prog Biomed. 2009;93(2):185-191. DOI: https://doi.org/10.1016/j.cmpb.2008.09.005

P.F. Rodriguez Lozano, E. Rrapo Kaso, J.M. Bourque, M. Morsy, A.M. Taylor, T. C. Villines, M. Salerno, Cardiovascular imaging for ischemic heart disease in women: time for a paradigm shift, Cardiovascul. Imag. 15 (8) (2022) 1488-1501. DOI: https://doi.org/10.1016/j.jcmg.2022.01.006

G. Litjens, F. Ciompi, J.M. Wolterink, B.D. de Vos, T. Leiner, J. Teuwen, I. Iˇ sgum, State-of-the-art deep learning in cardiovascular image analysis, JACC: Cardiovascul. Imag. 12 (1) (2019) 1549-1565, 8 Part. DOI: https://doi.org/10.1016/j.jcmg.2019.06.009

H. Malik, M.S. Farooq, A. Khelifi, A. Abid, J.N. Qureshi, M. Hussain, A comparison of transfer learning performance versus health experts in disease