Evaluation and Calibration of Christiansen Method for Estimating Daily Evaporation from Class-A Pan under the Conditions of Van, Turkey

Main Article Content

Selçuk Usta

Abstract

Evaporation (Epan) measured from Class-A pan evaporimeter is widely used in many studies within the scope of hydrology. Due to various reasons, it may be necessary to complete the unmeasured evaporation data using empirical estimation methods. The reliability of these methods varies depending on climatic and environmental conditions. Therefore, they need to be tested under the local conditions and calibrated if necessary. This study aims to test the usability of Christiansen evaporation estimation method under the conditions of Van, and to calibrate it in compatible with local conditions. Firstly, the original equation of this method was tested using nine years of daily climate data measured between 2012 and 2020. Then, the original equation was calibrated using the same data and its modified equation was created. The validity of evaporation values estimated using both the original and modified equations was tested with climate data from the period of 2021–2022. The performance of Christiansen method, calibrated using the linear regression approach, in estimating daily evaporation was evaluated using the determination coefficient (R2), mean absolute percentage error (MAPE), and Nash–Sutcliffe Efficiency (NSE) statistical metrics. While the original Christiansen equation estimated evaporation values with 74.90% accuracy (R2= 0.79, MAPE= 25.10%, NSE= 0.48), the accuracy improved to 86.58% (R2= 0.79, MAPE= 13.42%, NSE= 0.77) using the modified equation. The differences between the means of the data groups consisting of the measured evaporation values and those estimated using the modified Christiansen equation were not statistically significant (p > 0.05). It has been concluded that, the daily evaporation values estimated by the modified Christiansen equation can be used instead of the measured values.

Downloads

Download data is not yet available.

Article Details

How to Cite
Usta, S. (2024). Evaluation and Calibration of Christiansen Method for Estimating Daily Evaporation from Class-A Pan under the Conditions of Van, Turkey. The European Journal of Research and Development, 4(3), 22–37. https://doi.org/10.56038/ejrnd.v4i3.484
Section
Articles

References

Mbangiwa, N. C., Savage, M. J., & Mabhaudhi, T. (2019). Modelling and measurement of water productivity and total evaporation in a dry land soybean crop. Agricultural and Forest Meteorology, 266-267, 65-72. https://doi.org/10.1016/j.agrformet.2018.12.005 DOI: https://doi.org/10.1016/j.agrformet.2018.12.005

Malik, A., Rai, P., Heddam, S., Kisi, O., Sharafati, A., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2020). Pan evaporation estimation in Uttarakhand and Uttar Pradesh States, India: Validity of an integrative data intelligence model. Atmosphere, 11(6), 553. https://doi.org/10.3390/atmos11060553 DOI: https://doi.org/10.3390/atmos11060553

Abudu, S., Cui, C. L., King, J. P., Moreno, J., & Bawazır, A. S. (2011). Modeling of daily pan evaporation using partial least squares regression. Science China Technological Sciences, 54(1), 163-174. https://doi.org/10.1007/s11431-010-4205-z DOI: https://doi.org/10.1007/s11431-010-4205-z

Salman, S. A., Shahid, S., Ismail, T., Ahmed, K., & Wang, X. J. (2018). Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmospheric Research, 213, 509-522. https://doi.org/10.1016/j.atmosres.2018.07.008 DOI: https://doi.org/10.1016/j.atmosres.2018.07.008

Jing, W., Yaseen, Z. M., Shahid, S., Saggi, M. K., Tao, H., Kisi, O., Salih, S. O., Al-Ansari, N., & Chau, K. V. (2019). Implementation of evolutionary computing models for reference evapotranspiration modeling: short review, assessment and possible future research directions. Engineering Applications of Computational Fluid Mechanics, 13(1), 811-823. https://doi.org/10.1080/19942060.2019.1645045 DOI: https://doi.org/10.1080/19942060.2019.1645045

Zhao, G., & Gao, H. (2019). Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches. Remote Sensing of Environment, 226, 109-124. https://doi.org/10.1016/j.rse.2019.03.015 DOI: https://doi.org/10.1016/j.rse.2019.03.015

Allen, R. G., Pereire, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56. Available at https://www.fao.org/4/X0490E/X0490E00.htm (accessed on 18 Jun 2023).

Kaya, S., Evren, S., & Daşcı, E. (2016). Comparison of various equations for estimating Class A pan evaporation in semi-arid climate conditions. Journal of Agricultural Faculty of Uludag University, 30(2), 1-9. Available at https://dergipark.org.tr/tr/download/article-file/497295 (accessed on 11 May 2024).

Kohler, M. A. (1954). Lake and pan evaporation. Water loss investigations. Volume 1. Lake Hefner studies. United States Geological Survey Professional Paper 269. Available at https://pubs.usgs.gov/pp/0269/report.pdf (accessed on 22 April 2023).

Penman, H. L. (1956). Evaporation: an introductory survey. Netherlands Journal of Agricultural Science, 4(1), 9-29. https://doi.org/10.18174/njas.v4i1.17768 DOI: https://doi.org/10.18174/njas.v4i1.17768

Sellers, W. D. (1965). Physical climatology. University of Chicago Press, Chicago. Available at https://archive.org/details/physicalclimatol0000sell (accessed on 10 March 2023).

Hounam, C. E. (1973). Comparison between pan and lake evaporation, Technical Note No. 126, World Meteorological Organisation: Geneva, Switzerland.

Abtew, W. (2001). Evaporation estimation for Lake Okeechobee in south Florida. Journal of Irrigation and Drainage Engineering, 127(3), 140-147. https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(140) DOI: https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(140)

Tabari, H., Talaee, P. H., & Abghari, H. (2012). Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptron. Meteorology and Atmospheric Physics, 116(3-4), 147-154. https://doi.org/10.1007/s00703-012-0184-x DOI: https://doi.org/10.1007/s00703-012-0184-x

Friedrich, K., Grossman, R. L., Huntington, J., Blanken, P. D., Lenters, J., Holman, K. D., Gochis, D., Livneh, B., Prairie, J., Skeie, E., Healey, N. C., Dahm, K., Pearson, C., Finnessey, T., Hook, S. J., & Kowalski, T. (2017). Reservoir evaporation in the Western United States: Current science, challenges, and future needs. American Meteorological Society, 99, 167-187. Available at https://www.researchgate.net/publication/317633389_Reservoir_Evaporation_in_the_Western_United_States_Current_Science_Challenges_and_Future_Needs (accessed on 17 February 2024). DOI: https://doi.org/10.1175/BAMS-D-15-00224.1

Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of The Royal Society A, Mathematical, Physical and Engineering Sciences, 193(1032), 120-145. https://doi.org/10.1098/rspa.1948.0037 DOI: https://doi.org/10.1098/rspa.1948.0037

Kohler, M. A., Nordenson, T. J., & Fox, W. E. (1955). Evaporation from pans and lakes. United States Department of Commerce Research Paper No. 38. Available at https://library.oarcloud.noaa.gov/noaa_documents.lib/NOAA_historic_documents/WB/Research_papers/WB_Research_Paper_38.pdf (accessed on 20 March 2023).

Christiansen, J. E. (1968). Pan evaporation and evapotranspiration from climatic data. Journal of the Irrigation and Drainage Division, 94(2), 243-266. Available at https://core.ac.uk/download/pdf/32545803.pdf (accessed on 13 August 2023). DOI: https://doi.org/10.1061/JRCEA4.0000568

Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 DOI: https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

Linacre, E. T. (1977). A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agricultural Meteorology, 18(6), 409-424. https://doi.org/10.1016/0002-1571(77)90007-3 DOI: https://doi.org/10.1016/0002-1571(77)90007-3

Burman, R. D. (1976). Intercontinental comparison of evaporation estimates. Journal of the Irrigation and Drainage Division, 102(1), 109-119. DOI: https://doi.org/10.1061/JRCEA4.0001076

Irmak, S., & Haman, D. Z. (2003). Evaluation of five methods for estimating class A pan evaporation in a humid climate. HortTech., 13(3), 500-508. https://doi.org/10.21273/HORTTECH.13.3.0500 DOI: https://doi.org/10.21273/HORTTECH.13.3.0500

Sudheer, V. S. S., Viswanadh, G. K., & Ramana, G. V. (2017). Comparative study on estimation of various evapotranspiration techniques with Penman-Monteith method. International Journal of Civil Engineering and Technology, 8(8), 677-685. Available at http://http://iaeme.com/Home/issue/IJCIET?Volume=8&Issue=8 (accessed on 21 August 2023).

Durgam, U., & Sastri, A. (2018). Comparison of the monthly values of potential evapotranspiration estimated through different methods. International Journal of Science and Research, 7(6), 1051-1057. https://doi.org/10.21275/ART20183360

Usta, S., Gençoğlan, C., & Gençoğlan, S. (2023). Comparison of some evaporation estimation models under Kahramanmaras conditions. 4. İnternational Dicle Scientific Research and Innovation Congress. 18-19 April 2023. Diyarbakır. ss. 198-199.

Usta, S. (2024). Estimating daily evaporation from class-A pan evaporimeter using some empirical models in semi-arid-arid climatic conditions. Yuzuncu Yil University Journal of the Institute of Natural and Applied Sciences, 29(2), 632-647. https://doi.org/10.53433/yyufbed.1445512 DOI: https://doi.org/10.53433/yyufbed.1445512

Seifi, A., & Riahi, H. (2020). Estimating daily reference evapo-transpiration using hybrid gamma test-least square supportvector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11(1), 217-240. https://doi.org/10.2166/wcc.2018.003 DOI: https://doi.org/10.2166/wcc.2018.003

Dlouhá, D., Dubovský, V., & Pospíšil, L. (2021). Optimal calibration of evaporation models against Penman–Monteith equation. Water, 13(11), 1484. https://doi.org/10.3390/w13111484 DOI: https://doi.org/10.3390/w13111484

Du, J., Xu, X., Liu, H., Wang, L., & Cui, B. (2023). Deriving a high-quality daily dataset of large-pan evaporation over China using a hybrid model. Water Research, 238, 120005. DOI: https://doi.org/10.1016/j.watres.2023.120005

Wang, H., Sun, F., Liu, F., Wang, T., Liu, W., & Feng, Y. (2023). Reconstruction of the pan evaporation based on meteorological factors with machine learning method over China. Agricultural Water Management, 287, 108416. https://doi.org/10.1016/j.agwat.2023.108416 DOI: https://doi.org/10.1016/j.agwat.2023.108416

Turkish State Meteorological Service. (2022). Van province climate data. Ankara: General Directorate of State Meteorology Data Center.

TAGEM. (2017). Türkiye’de Sulanan Bitkilerin Bitki Su Tüketimleri. Available at https://www.tarimorman.gov.tr/TAGEM/Belgeler/yayin/Tu%CC%88rkiyede%20Sulanan%20Bitkilerin%20Bitki%20Su%20Tu%CC%88ketimleri.pdf (accessed on 26 July 2023).

Alsumaiei, A. A. (2020). Utility of artificial neural networks in modeling pan evaporation in hyper-arid climates. Water, 12, 1508. https://doi.org/10.3390/w12051508 DOI: https://doi.org/10.3390/w12051508

EOM SOLUTIONS. (2024). Evaporation tray set. Available at https://www.eom-messtechnik.at/webshop/en/evaporation-tray-set.html (accessed on 13 January 2024).

Doorenbos, J., & Pruitt, W. O. (1977). Guidelines for predicting crop water requirements – FAO Irrig. and drain. paper 24. Available at https://www.fao.org/4/f2430e/f2430e.pdf (accessed on 14 Jun 2021).

Islam, S., Abdullah, R. A. B., Tirth, V., Shahid, S., Algarni, S., & Hirol, H. (2020). Evaluation of mass transfer evapotranspiration models under semiarid conditions using MCDM approach. Applied Ecology and Environmental Research, 18 (5), 6355-6375. https://doi.org/10.15666/aeer/1805_63556375 DOI: https://doi.org/10.15666/aeer/1805_63556375

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journ. of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6 DOI: https://doi.org/10.1016/0022-1694(70)90255-6

Maiseli, B. J. (2019). Optimum design of chamfer masks using symmetric mean absolute percentage error. EURASIP Journal on Image and Video Processing, 74, 1-15. https://doi.org/10.1186/s13640-019-0475-y DOI: https://doi.org/10.1186/s13640-019-0475-y

Lufi, S., Ery, S., & Rispiningtati, R. (2020). Hydrological analysis of TRMM (Tropical Rainfall Measuring Mission) data in Lesti sub watershed. Civil and Environmental Science Journal, 3(1), 18-30. https://doi.org/10.21776/ub.civense.2020.00301.3 DOI: https://doi.org/10.21776/ub.civense.2020.00301.3

Pushpalatha, R., Perrin, C., Le Moine, N., & Andréassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420-421, 171-182. https://doi.org/10.1016/j.jhydrol.2011.11.055 DOI: https://doi.org/10.1016/j.jhydrol.2011.11.055

Duc, L., & Sawada, Y. (2023). A signal-processing-based interpretation of the Nash–Sutcliffe efficiency. Hydrology and Earth System Sciences, 27(9), 1827-1839. https://doi.org/10.5194/hess-27-1827-2023 DOI: https://doi.org/10.5194/hess-27-1827-2023

Almedeij, J. (2016). Modeling pan evaporation for Kuwait using multiple linear regression and time-series techniques. American Journal of Applied Sciences, 13(6), 739-747. https://doi.org/10.3844/ajassp.2016.739.747 DOI: https://doi.org/10.3844/ajassp.2016.739.747

Al-Dughairi, A. B. A., & Bourouba, M. F. (2023). Calibration of two models for estimating reference evapotranspiration by using FAO-56 Penman Monteith model under arid conditions. Engineering Heritage Journal (GWK), 7(2), 113-121. https://doi.org/10.26480/gwk.02.2023.113.121 DOI: https://doi.org/10.26480/gwk.02.2023.113.121

Kim, C. -G., Lee, J., Lee, J. -E., & Chung, I. -M. (2024). Calibration and evaluation of alternative methods for reliable estimation of reference evapotranspiration in South Korea. Water, 16(17), 2471. https://doi.org/10.3390/w16172471 DOI: https://doi.org/10.3390/w16172471