Using and Comparison of Artificial Intelligence Techniques to Detect Misinformation and Disinformation on Twitter
Main Article Content
Abstract
This research investigates diverse artificial intelligence (AI) techniques for detecting misinformation on Twitter, addressing the pervasive concern of misinformation and fake news affecting public discourse. Employing models such as Long Short-Term Memory (LSTM), Support Vector Machine (SVM), Random Forest Classifier, Multinomial Naive Bayes and Gradient Boosting Classifier, we discern deceptive content from reliable information. Utilizing a dataset of 23,481 false tweets and approximately 21,417 real tweets, our analysis leverages Natural Language Processing (NLP), Deep Learning (DL) and Machine Learning (ML) techniques, showcasing the effectiveness of each model in identifying misinformation patterns. Our investigation rigorously assesses the strengths and limitations of AI techniques, focusing on accuracy, efficiency and scalability. Notably, the best results are achieved by models such as LSTM (98.84% accuracy, 98.79% F1 score), SVM (99.44% accuracy, 99.44% F1 score) and XGBoost Classifier (99.82% accuracy, 99.81% F1 score). The findings provide valuable insights into the performance of key models and serve as a resource for academics and researchers in the fields of artificial intelligence and social media analysis. Additionally, they provide practical guidance for supporting information integrity on Twitter, contributing to ongoing efforts to combat misinformation and enhance information credibility.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Song, C., Ning, N., Zhang, Y. & Wu, B. (2021). A multimodal fake news detection model based on crossmodal attention residual and multichannel convolutional neural networks. Inf process manag 58.
Shu, K., Cui, L., Wang, S., Lee, D. & Liu, H. (2019). Defend: explainable fake news detection. In proceedings of the acm sigkdd international conference on knowledge discovery and data mining pp 395–405. Association for computing machinery.
Imran, A., Uddin Ahmed, M., Hussain, S. & Iqbal, J. (2022). Social engagement analysis for detection of fake news on twitter using machine learning. Vol 19.
Li, J. & Lei, M. (2022). A brief survey for fake news detection via deep learning models. In procedia computer science vol 214 pp 1339–44. Elsevier b.v.
Limon, F. A. & Jahan, N. (2021). Fake news detection using deep learning. http://dspace.daffodilvarsity.edu.bd:8080/handle/123456789/7430
Pennycook, G. & Rand, D. G. (2021). The psychology of fake news. Trends cogn sci 25, 388–402.
George, J., Gerhart, N. & Torres, R. (2021). Uncovering the truth about fake news: a research model grounded in multi-disciplinary literature. Journal of management information systems 38, 1067–94.
Hu, B., Mao, Z. & Zhang, Y. (2024). An overview of fake news detection: from a new perspective. Fundamental research. ISSN 2667-3258, https://doi.org/10.1016/j.fmre.2024.01.017.
Burgers, N., Imaad, T. & Aladeen, H. (2023). Can machine learning algorithms really stop fake news in its tracks?
Hanshal, O. A., Ucan, O. N. & Sanjalawe, Y. K. (2023). Hybrid deep learning model for automatic fake news detection. Applied nanoscience (switzerland) 13, 2957–67.
John, A. & Journals, S. (2022). Fake news detection using n-gram analysis and machine learning algorithms.
Jain, A., Shakya, A., Khatter, H. & Gupta, A. K. (2019). A smart system for fake news detection using machine learning. In ieee international conference on issues and challenges in intelligent computing techniques, icict 2019. Institute of electrical and electronics engineers inc.
Melvern, A., Sibaroni, Y. & Prasetiyowati, S. S. (2023). Fake news detection: hybrid deep supervised learning approach. In 2023 international conference on data science and its applications, icodsa 2023 pp 414–9. Institute of electrical and electronics engineers inc.
Güler, G. & Gündüz, S. (2023). Deep learning based fake news detection on social media. International journal of information security science 12, 1–21.
Asta, R. S. & Budi Setiawan, E. (2023). Fake news (hoax) detection on social media using convolutional neural network (cnn) and recurrent neural network (rnn) methods. In international conference on ict convergence vol 2023-August pp 511–6, Ieee computer society.
Aslam, N., Ullah Khan, I., Alotaibi, F. S., Aldaej, L. A. & Aldubaikil, A. K. (2021). Fake detect: a deep learning ensemble model for fake news detection. Complexity 2021.
Tin, P. T. (2018). A study on deep learning for fake news detection. JAIST: Japan Advanced Institute of Science and Technology, 1-49.
Verma, P. K., Agrawal, P., Amorim, I. & Prodan, R. (2021). Welfake: word embedding over linguistic features for fake news detection. Ieee trans comput soc syst 8 881–93.
Alyoubi, S., Kalkatawi, M. & Abukhodair, F. (2023). The detection of fake news in arabic tweets using deep learning. Applied sciences (switzerland) 13.
Hailemichael, E. N. (2021). Fake news detection for amharic language using deep learning adama, ethiopia.
Thiyagarajan, V. S. (2024). Identifying fake news on isot data using stemming method with a subdomain of ai algorithms. Migration letters, 21 (S6), 775-787.
Mjaaland, H. L., Vinay, R., Setty, J. & Anand, A. (2020). Detecting fake news and rumors in twitter using deep neural networks vinay jayarama setty.
Ahmad, I., Yousaf, M., Yousaf, S. & Ahmad, M. O. (2020). Fake news detection using machine learning ensemble methods. Complexity 2020.
Abdullah-All-Tanvir, Mahir, E. M., Akhter, S. & Huq, M. R. (2019). 2019 7th international conference on smart computing & communications (icscc).
Khanam, Z., Alwasel, B. N., Sirafi, H. & Rashid, M. (2021). Fake news detection using machine learning approaches. Iop conf ser mater sci eng 1099 012040.
Choudhary, A. & Arora, A. (2021). Linguistic feature based learning model for fake news detection and classification. Expert syst appl 169.
Reddy, H., Raj, N., Gala, M. & Basava, A. (2020). Text-mining-based fake news detection using ensemble methods. International journal of automation and computing 17, 210–21.
ANON. Www.uvic.ca/engineering/ece/isot/assets/docs/isot_fake_news_dataset_readme.pdf.
Ali, A. M., Ghaleb, F. A., Al-Rimy, B. A. S., Alsolami, F. J. & Khan, A. I. (2022). Deep ensemble fake news detection model using sequential deep learning technique. Sensors 22.
Samadi, M., Mousavian, M. & Momtazi, S. (2021). Deep contextualized text representation and learning for fake news detection. Inf process manag 58.
Goldani, M. H., Momtazi, S. & Safabakhsh, R. (2021). Detecting fake news with capsule neural networks. Appl soft comput 101.
Hakak, S., Alazab, M., Khan, S., Gadekallu, T. R., Maddikunta, P. K. R. & Khan, W. Z. (2021). An ensemble machine learning approach through effective feature extraction to classify fake news. Future generation computer systems 117, 47–58.
Goldani, M. H., Safabakhsh, R. & Momtazi, S. (2021). Convolutional neural network with margin loss for fake news detection. Inf process manag 58.
Gifu, D. (2023). An intelligent system for detecting fake news. In procedia computer science vol 221, pp 1058–65. Elsevier b.v.