Sorption properties of Remazol Navy RGB 150 from an aqueous solution onto activated carbon prepared from Posidonia oceanica seagrass

Main Article Content

Hacer Şensöz
https://orcid.org/0000-0002-2173-8974
Ramazan Donat
https://orcid.org/0000-0002-5701-5030

Abstract

In this study, adsorption parameters were examined to remove RN- RGB 150 ions from aqueous solutions by using activated carbon obtained from Posidonia Oceanica, which is known as seagrass. The structure of activated carbon derived from Posidonia Oceanica seagrass was characterized by FTIR, SEM, and BET analysis methods. The significance of parameters such as temperature, solution concentration, adsorbent dosage, and the influence of time on the adsorption performance of RN-RGB 150 ions has been comprehensively investigated. The adsorption of RN-RGB 150 ions onto PO-AC demonstrated exceptional agreement with the Langmuir isotherm model, achieving a remarkable maximum adsorption capacity of 60.97 mg.g⁻¹ and an adsorbate density of 0.1519 L m.g⁻¹. This significant finding highlights the potential of PO-AC as a highly effective adsorbent for RN-RGB 150 ions, suggesting its suitability for applications such as wastewater treatment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Şensöz, H., & Donat, R. (2024). Sorption properties of Remazol Navy RGB 150 from an aqueous solution onto activated carbon prepared from Posidonia oceanica seagrass. The European Journal of Research and Development, 4(2), 149–167. https://doi.org/10.56038/ejrnd.v4i2.447
Section
Articles

References

Akyıl, S., Aslani, M. A., & Aytaş, Ş. Ö. (1998). Distribution of uranium on zeolite X and investigation of thermodynamic parameters for this system. Journal of Alloys and Compounds, 271, 769-773. DOI: https://doi.org/10.1016/S0925-8388(98)00204-7

Albadarin, A. B., & Mangwandi, C. (2015). Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. Journal of environmental management,164, 86-93. DOI: https://doi.org/10.1016/j.jenvman.2015.08.040

Ali, N., Ali, F., Ullah, I., Ali, Z., Duclaux, L., Reinert, L., ... & Ahmad, I. (2020). Organically modified micron-sized vermiculite and silica for efficient removal of Alizarin Red S dye pollutant from aqueous solution. Environmental Technology & Innovation, 19, 101001. DOI: https://doi.org/10.1016/j.eti.2020.101001

Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A. G., Elsamahy, T., ... & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. DOI: https://doi.org/10.1016/j.ecoenv.2021.113160

Arabi, S., & Sohrabi, M. R. (2014). Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water science and technology, 70(1), 24-31. DOI: https://doi.org/10.2166/wst.2014.189

Aravind, P., Selvaraj, H., Ferro, S., Neelavannan, G. M., & Sundaram, M. (2018). A one-pot approach: oxychloride radicals enhanced electrochemical oxidation for the treatment of textile dye wastewater trailed by mixed salts recycling. Journal of cleaner production, 182, 246-258. DOI: https://doi.org/10.1016/j.jclepro.2018.02.064

Brião, G. V., Jahn, S. L., Foletto, E. L., & Dotto, G. L. (2018). Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 556, 43-50. DOI: https://doi.org/10.1016/j.colsurfa.2018.08.019

Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., & Trapalis, C. (2009). Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. Journal of hazardous materials, 170(2-3), 836-844. DOI: https://doi.org/10.1016/j.jhazmat.2009.05.045

Bożęcka, A., Orlof-Naturalna, M., & Kopeć, M. (2021). Methods of dyes removal from aqueous environment. Journal of Ecological Engineering, 22(9). DOI: https://doi.org/10.12911/22998993/141368

Bulgariu, L., Escudero, L. B., Bello, O. S., Iqbal, M., Nisar, J., Adegoke, K. A., ... & Anastopoulos, I. (2019). The utilization of leaf-based adsorbents for dyes removal: A review. Journal of Molecular Liquids, 276, 728-747. DOI: https://doi.org/10.1016/j.molliq.2018.12.001

Chang, Y. M., Tsai, W. T., & Li, M. H. (2015). Chemical characterization of char derived from slow pyrolysis of microalgal residue. Journal of analytical and applied pyrolysis, 111, 88-93. DOI: https://doi.org/10.1016/j.jaap.2014.12.004

Chen, S., Zhang, J., Zhang, C., Yue, Q., Li, Y., & Li, C. (2010). Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination, 252(1-3), 149-156. DOI: https://doi.org/10.1016/j.desal.2009.10.010

Dawood, S., Sen, T. K., & Phan, C. (2018). Performance and dynamic modelling of biochar and kaolin packed bed adsorption column for aqueous phase methylene blue (MB) dye removal. Environmental technology. DOI: https://doi.org/10.1080/09593330.2018.1491065

Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., ... & Liu, Y. (2014). Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 1-7. DOI: https://doi.org/10.1016/j.colsurfa.2014.01.030

Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Materials Advances, 2(14), 4497-4531. DOI: https://doi.org/10.1039/D1MA00354B

Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470. DOI: https://doi.org/10.1515/zpch-1907-5723

Gokulan, R., Ganesh Prabhu, G., & Jegan, J. (2019). A novel sorbent Ulva lactuca‐derived biochar for remediation of Remazol Brilliant Orange 3R in packed column. Water Environment Research, 91(7), 642-649. DOI: https://doi.org/10.1002/wer.1092

Goswami, M., & Phukan, P. (2017). Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Journal of Environmental Chemical Engineering, 5(4), 3508-3517. DOI: https://doi.org/10.1016/j.jece.2017.07.016

Gupta, N., Kushwaha, A. K., & Chattopadhyaya, M. C. (2012). Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 125-131. DOI: https://doi.org/10.1016/j.jtice.2011.07.009

Hassan, N., Shahat, A., El-Didamony, A., El-Desouky, M. G., & El-Bindary, A. A. (2020). Mesoporous iron oxide nano spheres for capturing organic dyes from water sources. Journal of Molecular Structure, 1217, 128361. DOI: https://doi.org/10.1016/j.molstruc.2020.128361

Hien, N. T., Nguyen, L. H., Van, H. T., Nguyen, T. D., Nguyen, T. H. V., Chu, T. H. H., ... & Aziz, K. H. H. (2020). Heterogeneous catalyst ozonation of Direct Black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastes. Separation and Purification Technology, 233, 115961. DOI: https://doi.org/10.1016/j.seppur.2019.115961

Ho, Y. S. (2014). The real pseudo-second-order rate equation. Industrial Crops & Products, (52), 17. DOI: https://doi.org/10.1016/j.indcrop.2013.09.037

Homem, N. C., Beluci, N. D. C. L., Amorim, S., Reis, R., Vieira, A. M. S., Vieira, M. F., ... & Amorim, M. T. P. (2019). Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Applied Surface Science, 486, 499-507. DOI: https://doi.org/10.1016/j.apsusc.2019.04.276

Kadhom, M., Albayati, N., Alalwan, H., & Al-Furaiji, M. (2020). Removal of dyes by agricultural waste. Sustainable Chemistry and Pharmacy, 16, 100259. DOI: https://doi.org/10.1016/j.scp.2020.100259

Kang, Y. G., Yoon, H., Lee, C. S., Kim, E. J., & Chang, Y. S. (2019). Advanced oxidation and adsorptive bubble separation of dyes using MnO2-coated Fe3O4 nanocomposite. Water research, 151, 413-422. DOI: https://doi.org/10.1016/j.watres.2018.12.038

Khan, A. S., & Khan, A. M. (1995). Adsorption of chromium (III), Chromium (VI) and Silver (I) on bentonite. WASTE MANAGEMENT-PERGAMON PRESS-, 15, 271-282. DOI: https://doi.org/10.1016/0956-053X(95)00025-U

Kumar, M., Gokulan, R., Sujatha, S., Shanmuga Priya, S. P., Praveen, S., & Elayaraja, S. (2021). Biodecolorization of Reactive Red 120 in batch and packed bed column using biochar derived from Ulva reticulata. Biomass Conversion and Biorefinery, 1-15. DOI: https://doi.org/10.1007/s13399-020-01268-x

Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295. DOI: https://doi.org/10.1021/ja02268a002

Li, Y., Zhang, X., Yang, R., Li, G., & Hu, C. (2016). Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue. Water Science and Technology, 73(5), 1122-1128. DOI: https://doi.org/10.2166/wst.2015.450

Liu, B., Zheng, H., Wang, Y., Chen, X., Zhao, C., An, Y., & Tang, X. (2018a). A novel carboxyl-rich chitosan-based polymer and its application for clay flocculation and cationic dye removal. Science of the total environment, 640, 107-115. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.309

Liu, L., Fan, S., & Li, Y. (2018b). Removal behavior of methylene blue from aqueous solution by tea waste: kinetics, isotherms and mechanism. International journal of environmental research and public health, 15(7), 1321. DOI: https://doi.org/10.3390/ijerph15071321

Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science, 487, 907-917. DOI: https://doi.org/10.1016/j.apsusc.2019.04.273

Reda, M.M., & Sayeda, M.A. (2018). The efficacy of microalgal biomass collected from high rate algal pond for dyes biosorption and biofuel production. Res J Chem Environ, 22(11), 54-60.

Nachiyar, C. V., Rakshi, A. D., Sandhya, S., Jebasta, N. B. D., & Nellore, J. (2023). Developments in treatment technologies of dye-containing effluent: A review. Case Studies in Chemical and Environmental Engineering, 100339. DOI: https://doi.org/10.1016/j.cscee.2023.100339

Nurhadi, M., Kusumawardani, R., Wirhanuddin, W., Gunawan, R., & Nur, H. (2019). Carbon-containing hydroxyapatite obtained from fish bone as low-cost mesoporous material for methylene blue adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 660-671. DOI: https://doi.org/10.9767/bcrec.14.3.5365.660-671

Obaid, F. H., & Ali, L. A. M. (2023, February). Adsorption of the textile dye (reactive black 5) using orange peels as an adsorbent low-cost. In AIP Conference Proceedings (Vol. 2414, No. 1). AIP Publishing. DOI: https://doi.org/10.1063/5.0115736

Pandya, K. Y., Patel, R. V., Jasrai, R. T., & Brahmbhatt, N. H. (2017). Preliminary study on potential of seaweeds in decolorization efficacy of synthetic dyes effluent. Int. J. Plant Anim. Environ. Sci, 7, 223-4490.

Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian journal of chemistry, 10, S1445-S1451. DOI: https://doi.org/10.1016/j.arabjc.2013.04.021

Peng, Q., Yu, F., Huang, B., & Huang, Y. (2017). Carbon-containing bone hydroxyapatite obtained from tuna fish bone with high adsorption performance for Congo red. RSC advances, 7(43), 26968-26973. DOI: https://doi.org/10.1039/C6RA27055G

Pereira, L. A., Couto, A. B., Almeida, D. A. L., & Ferreira, N. G. (2020). Singular properties of boron-doped diamond/carbon fiber composite as anode in Brilliant Green dye electrochemical degradation. Diamond and Related Materials, 103, 107708. DOI: https://doi.org/10.1016/j.diamond.2020.107708

Rasheed, T., Bilal, M., Hassan, A. A., Nabeel, F., Bharagava, R. N., Ferreira, L. F. R., ... & Iqbal, H. M. (2020). Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environmental research, 185, 109436. DOI: https://doi.org/10.1016/j.envres.2020.109436

Saleem, M. M. R. J., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective adsorption of uranium on activated charcoal from electrolytic aqueous solutions. Separation Science and Technology, 27(2), 239-253. DOI: https://doi.org/10.1080/01496399208018876

Samei, M., Sarrafzadeh, M. H., & Faramarzi, M. A. (2019). The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environmental Science and Pollution Research, 26, 2409-2420. DOI: https://doi.org/10.1007/s11356-018-3787-z

Stella Mary, G., Sugumaran, P., Niveditha, S., Ramalakshmi, B., Ravichandran, P., & Seshadri, S. (2016). Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture, 5, 43-53. DOI: https://doi.org/10.1007/s40093-016-0116-8

Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318(1-3), 88-96. DOI: https://doi.org/10.1016/j.colsurfa.2007.12.018

Tural, B., Ertaş, E., Enez, B., Fincan, S. A., & Tural, S. (2017). Preparation and characterization of a novel magnetic biosorbent functionalized with biomass of Bacillus Subtilis: Kinetic and isotherm studies of biosorption processes in the removal of Methylene Blue. Journal of Environmental Chemical Engineering, 5(5), 4795-4802. DOI: https://doi.org/10.1016/j.jece.2017.09.019

Wanyonyi, W. C., Onyari, J. M., & Shiundu, P. M. (2013). Adsorption of methylene blue dye from aqueous solutions using Eichhornia crassipes. Bulletin of environmental contamination and toxicology, 91, 362-366. DOI: https://doi.org/10.1007/s00128-013-1053-0

Wawrzkiewicz, M., Polska-Adach, E., & Hubicki, Z. (2019). Application of titania based adsorbent for removal of acid, reactive and direct dyes from textile effluents. Adsorption, 25, 621-630. DOI: https://doi.org/10.1007/s10450-019-00062-0

Wu, J., Yang, J., Feng, P., Huang, G., Xu, C., & Lin, B. (2020). High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere, 246, 125734. DOI: https://doi.org/10.1016/j.chemosphere.2019.125734

Yang, J., & Qiu, K. (2010). Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chemical Engineering Journal, 165(1), 209-217. DOI: https://doi.org/10.1016/j.cej.2010.09.019

Zhang, L., Shao, Q., & Xu, C. (2019). Enhanced azo dye removal from wastewater by coupling sulfidated zero-valent iron with a chelator. Journal of cleaner production, 213, 753-761. DOI: https://doi.org/10.1016/j.jclepro.2018.12.183

Zhang, S., Dong, Q., Zhang, L., & Xiong, Y. (2015). High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresource technology, 191, 17-23. DOI: https://doi.org/10.1016/j.biortech.2015.04.114