Design and manufacturing of rotating bending fatigue test machine
Main Article Content
Abstract
Fatigue strength is an important criterion for all materials used. In the past years, it has been observed that materials cannot carry the loads they carry statically under service conditions. This situation is explained by the phenomenon of "cyclic loading" in the literature. Cyclic loadings cause damage by creating a crack in the surface of the material or by exploiting an existing discontinuity. There are many test methods and devices for determining fatigue strength. All of these are based on the repetition of a certain load in different ways. Among the tests applied, the least costly and simplest method is the rotating bending fatigue test.
In this study, a rotating bending fatigue test device was designed and manufactured. Fatigue life of AA 6063 aluminum alloys, which were prepared according to the fatigue test sample standards and with specific properties, were subjected to fatigue test and calculated.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
ASTM. (2013). Standard Test Methods for Tension Testing of Metallic Materials, ASTM International.
Burhan, M. ve Çavdar, K. (2010). Eksantrik yay yorulma cihazının tasarımı ve imalatı. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 15(1).
Công, T. C., Thắng, N. V., Thủy, T. T. T., Dương, K. Đ. ve Blongher, N. (2018). Nghiên cứu sức bền mỏi của vật liệu thép C45 trước và sau khi tôi cứng Studying the fatigue strength of C45 steel material before and after quenching.
Ewing, J. A. ve Humfrey, J. C. W. (1903). VI. The fracture of metals under repeated alternations of stress. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 200(321-330), 241-250. DOI: https://doi.org/10.1098/rsta.1903.0006
Jayaraman, P. (2014). Multi-response optimization of machining parameters of turning AA6063 T6 aluminium alloy using grey relational analysis in Taguchi method. Procedia Engineering, 97, 197-204. DOI: https://doi.org/10.1016/j.proeng.2014.12.242
Küçük, E., Özçelik, S., Bakacak, K.A., Sun, Y. ve Ahlatcı, H. (2014). Dönel eğmeli yorulma test cihazının tasarımı ve üretimi döner çubuk bükme yorulma test cihazı tasarım ve imalatı. I. Uluslararası Endüstriyel Tasarım Mühendisliği Sempozyumu, Karabük Üniversitesi.
Marzoli, L. M., Strombeck, A. V., Dos Santos, J. F., Gambaro, C. ve Volpone, L. M. (2006). Friction stir welding of an AA6061/Al2O3/20p reinforced alloy. Composites science and technology, 66(2), 363-371. DOI: https://doi.org/10.1016/j.compscitech.2005.04.048
McAdam, D. J. ve Relationships, S. S. C. (1927). Corrosion fatigue of metals. Journal Transaction American Society Steel Treat, 11, 355-79.
Nanninga, N. E. (2008). High cycle fatigue of AA6082 and AA6063 aluminum extrusions. Michigan Technological University.
Nanninga, N., White, C., Mills, O. ve Lukowski, J. (2010). Effect of specimen orientation and extrusion welds on the fatigue life of an AA6063 alloy. International journal of fatigue, 32(2), 238-246. DOI: https://doi.org/10.1016/j.ijfatigue.2009.06.004
Orowan, E. (1939). Theory of the fatigue of metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 171(944), 79-106. DOI: https://doi.org/10.1098/rspa.1939.0055
Patel, M., Chaudhary, B., Murugesan, J., Jain, N. K. ve Patel, V. (2022). Enhancement of tensile and fatigue properties of hybrid aluminium matrix composite via multipass friction stir processing. Journal of materials research and technology, 21, 4811-4823. DOI: https://doi.org/10.1016/j.jmrt.2022.11.073
Sayid, A. A., El-Kashif, E., Adly, M. A., Morsy, M. A. ve Abdelkawy, A. (2021). Fatigue behavior of surfaced C45 steel. Journal of Engineering and Applied Science, 68(1), 1-11. DOI: https://doi.org/10.1186/s44147-021-00016-w
Swanson, S. R. (Ed.). (1974). Handbook of fatigue testing (Vol. 566). ASTM International. DOI: https://doi.org/10.1520/STP566-EB
Tanasković, D., Aranđelović, M., Đorđević, B., Jeremić, L., Sedmak, S. ve Gajin, M. (2020). Repair attempts of cold crack on forklift made of C45 steel: Case study. Welding and Material Testing, 29(4), 25-28.
Tauscher, H. (1983). Çelik ve dökme demirlerin yorulma dayanımı malzeme davranışı biçim etkisi ve hesaplama yöntemleri.
Teed, P. L. (1950). The properties of metallic materials at low temperatures, Vol. 1. New York.
Thompson, N. ve Wadsworth, N. J. (1958). Metal fatigue. Advances in Physics, 7(25), 72-169. DOI: https://doi.org/10.1080/00018735800101177
Uçan R. ve Topuz A., (1991). 36Mn5 Çeliğinde yorulma kırılma tokluğunun ve çatlak ilerleme parametrelerinin belirlenmesi. Üçüncü ulusal kırılma konferansı, İTÜ.
Van Paepegem, W. ve Degrieck, J. (2001). Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites. Composite structures, 51(1), 1-8. DOI: https://doi.org/10.1016/S0263-8223(00)00092-1
Yahya, M. M., Mallik, N. ve Chakrabarty, I. (2015). Low cycle fatigue (LCF) behavior of AA6063 aluminium alloy at room temperature. Int. J. Emerging Adv. Res. Technol., 5, 100.
Yeşildal, R. (1999). X40CrMoV 5 1 sıcak iş takım çeliğinin yüksek sıcaklık yorulma mukavemetinin incelenmesi. Atatürk Üniversitesi, Erzurum.
Yeşildal, R., Şen S. ve Kaymaz, İ. (2003). X40CrMo 5 1 Çeliğinin 20-600oC Arasındaki Yorulma Davranışı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 5(1), 159-171.