The Diagnosis of Alzheimer's Disease using EEG Signals

Main Article Content

Hülya Akkaş
Fatma Latifoğlu
Mahmut Tokmakçı

Abstract

Alzheimer is a common and significant neurological disorder worldwide, typically associated with age-related dementia. Alzheimer's patients exhibit slower brain activities compared to healthy individuals, and the most prominent symptom of the disease is the impairment of cognitive functions. Early diagnosis of Alzheimer's is crucial to prevent the rapid progression of the disease. In this study, the feasibility of using electroencephalography (EEG) signals, a non-invasive, cost-effective, and objective method, to facilitate the diagnosis of Alzheimer's Disease (AD) was investigated.


The study utilized EEG signals from both Alzheimer's patients and healthy individuals, which were made publicly available by Florida State University. Preprocessing was applied to the EEG signals to eliminate existing noise. Subsequently, a total of 34 various features in the time and frequency domains, such as entropy, Hjorth parameters, etc., were extracted from the EEG signals for the purpose of Alzheimer's diagnosis. Machine learning techniques, including decision trees (DT), support vector machines (SVM), and artificial neural networks (ANN), were applied to classify the data, and success rates for Alzheimer's detection were achieved.

Downloads

Download data is not yet available.

Article Details

How to Cite
Akkaş, H., Latifoğlu, F., & Tokmakçı, M. (2023). The Diagnosis of Alzheimer’s Disease using EEG Signals. The European Journal of Research and Development, 3(3), 1–13. https://doi.org/10.56038/ejrnd.v3i3.273
Section
Articles

References

Castellani, R. J., Rolston, R. K., & Smith, M. A. (2010). Alzheimer disease. Disease-a-month: DM, 56(9), 484. DOI: https://doi.org/10.1016/j.disamonth.2010.06.001

Carter, J., & Lippa, C. F. (2001). Amyloid, Neuronal Death and Alzheimer's Disease. Current Molecular Medicine, 1(6), 733-737. DOI: https://doi.org/10.2174/1566524013363177

Alzheimer's Association. (2023). 2023 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 19(4), 1598-1695. DOI: https://doi.org/10.1002/alz.13016

Safi, M. S., & Safi, S. M. M. (2021). Early detection of Alzheimer’s disease from EEG signals using Hjorth parameters. Biomedical Signal Processing and Control, 65 (102338): 1-6. DOI: https://doi.org/10.1016/j.bspc.2020.102338

Afsa, S., Ramesh, Ms. R., Abdulla, D., Nair, A. M., Fathima, T.M. (2018). Early stage Alzheimer detection using EEG. International Research Journal of Engineering and Technology (IRJET), 05 (06): 2395-0072

Deshmukh, A., V Karki, M., SR, B., & JP, H. (2022). Deep Neural Network Model for Automated Detection of Alzheimer’s Disease using EEG Signals. International Journal of Online & Biomedical Engineering, 18 (8): 115-126 DOI: https://doi.org/10.3991/ijoe.v18i08.29867

Pineda, A. M., Ramos, F. M., Betting, L. E., & Campanharo, A. S. (2020). Quantile graphs for EEG-based diagnosis of Alzheimer’s disease. Plos One, 15(6), e0231169. DOI: https://doi.org/10.1371/journal.pone.0231169

Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data classification: Algorithms and applications, 37.

Tay, F. E., & Shen, L. (2002). A modified chi2 algorithm for discretization. IEEE Transactions On Knowledge And Data Engineering, 14(3), 666-670. DOI: https://doi.org/10.1109/TKDE.2002.1000349

(2021). JavaTPoint: https://www.javatpoint.com/classification-algorithm-in-machine-learning. (Access date: July 2023)

Truelove-Hill, M. (2018). Using Machine Learning to Differentiate between Healthy Aging, Mild Cognitive Impairment, & Alzheimer's Disease. Drexel University, Doctoral Thesis, 24-26.

U. Orhan, M. Hekim, and M. Ozer. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl., 38(10), 13475–13481. DOI: https://doi.org/10.1016/j.eswa.2011.04.149

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR), 9 (1), 381-386.

Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia Of Machine Learning. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-0-387-30164-8

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. DOI: https://doi.org/10.1016/j.patrec.2005.10.010

Bairagi, V. (2018). EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features. International Journal of Information Technology, 10(3), 403-412. DOI: https://doi.org/10.1007/s41870-018-0165-5

Kulkarni, N., & Bairagi, V. K. (2014). Diagnosis of Alzheimer disease using EEG signals. International Journal of Engineering Research, 3 (4), 2278-0181.

Alsharabi, K., Salamah, Y. B., Abdurraqeeb, A. M., Aljalal, M., & Alturki, F. A. (2022). EEG signal processing for Alzheimer’s disorders using discrete wavelet transform and machine learning approaches. IEEE Access, 10, 89781-89797. DOI: https://doi.org/10.1109/ACCESS.2022.3198988

Biagetti, G., Crippa, P., Falaschetti, L., Luzzi, S., & Turchetti, C. (2021). Classification of Alzheimer’s disease from EEG signal using robust-PCA feature extraction. Procedia Computer Science, 192 (2021): 3114-3122. DOI: https://doi.org/10.1016/j.procs.2021.09.084

Kim, H. T., Kim, B. Y., Park, E. H., Kim, J. W., Hwang, E. W., Han, S. K., & Cho, S. (2005). Computerized recognition of Alzheimer disease-EEG using genetic algorithms and neural network. Future Generation Computer Systems, 21(7), 1124-1130. DOI: https://doi.org/10.1016/j.future.2004.03.012

Lehmann, C., Koenig, T., Jelic, V., Prichep, L., John, R. E., Wahlund, L. O., ... & Dierks, T. (2007). Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). Journal of neuroscience methods, 161 (2), 342-350. DOI: https://doi.org/10.1016/j.jneumeth.2006.10.023

Akrofi, K., Baker, M. C., O'Boyle, M. W., & Schiffer, R. B. (2008, August). Clustering and modeling of EEG coherence features of Alzheimer's and mild cognitive impairment patients. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1092-1095. DOI: https://doi.org/10.1109/IEMBS.2008.4649350

Ahmadlou, M., Adeli, H., & Adeli, A. (2010). New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. Journal Of Neural Transmission, 117, 1099-1109. DOI: https://doi.org/10.1007/s00702-010-0450-3

Falk, T. H., Fraga, F. J., Trambaiolli, L., & Anghinah, R. (2012). EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer’s disease. EURASIP Journal on Advances in Signal Processing, 192 (2012), 1-9. DOI: https://doi.org/10.1186/1687-6180-2012-192

Ghorbanian, P., Devilbiss, D. M., Simon, A. J., Bernstein, A., Hess, T., & Ashrafiuon, H. (2012, August). Discrete wavelet transform EEG features of Alzheimer's disease in activated states. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2937-2940. DOI: https://doi.org/10.1109/EMBC.2012.6346579