Design of Wavelength Selectively Metamaterial Antenna for Thermal Camouflage

Main Article Content

Atıf Kerem Şanlı
Timuçin Emre Tabaru
Veli Tayfun Kılıç

Abstract

Phase transition materials offer exciting opportunities to dynamically control the optical properties of photonic devices. As a special phase change material (PCM), vanadium dioxide (VO2) is an excellent alternative for thermal camouflage technology research. Due to the unique property of VO2, coupled with the metallic structure can enable the design of thermally reconfigurable absorbers that allow resonance tuning. We propose a very simple, multi-layered with metamaterial excellent thermal emitter nanoantenna. The size of our design is only 1365 nm for the infrared wavelength range from 0.8 to 12 µm. Concept silver (Ag), VO2, dielectric separator and silver (Ag) configuration are used for finite difference time domain (FDTD) analysis. The absorption band can be further expanded with more deposition layers with various metals. In this paper, a thermal camouflage mid-infrared adaptive metamaterial antenna based on a PCM metamaterial is designed to fit perfectly into atmospheric windows. The spectral properties of the structure were calculated using FDTD method. The distinctive feature of the proposed structure is that adaptations can be made by placing an ultra-thin VO2 interlayer between the metallic structures. We believe that the proposed design is very promising in terms of simple fabrication and modifiable aspects for wide-area broadband unity absorption.

Downloads

Download data is not yet available.

Article Details

How to Cite
Şanlı, A. K., Tabaru, T. E. ., & Kılıç, V. T. . (2022). Design of Wavelength Selectively Metamaterial Antenna for Thermal Camouflage. The European Journal of Research and Development, 2(4), 90–97. https://doi.org/10.56038/ejrnd.v2i4.181
Section
Articles

References

Baranwal, N., & Mahulikar, S. P. (2016). Infrared signature of aircraft engine with choked converging nozzle. Journal of thermophysics and heat transfer, 30(4), 854-862. DOI: https://doi.org/10.2514/1.T4641

Karshalev, E. (2020). Materials and Designs for Small-Scale Propelled Devices Towards Environmental and Biological Applications. University of California, San Diego.

Xie, X., Li, X., Pu, M., Ma, X., Liu, K., Guo, Y., & Luo, X. (2018). Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Advanced Functional Materials, 28(14), 1706673. DOI: https://doi.org/10.1002/adfm.201706673

Baranov, D. G., Xiao, Y., Nechepurenko, I. A., Krasnok, A., Alù, A., & Kats, M. A. (2019). Nanophotonic engineering of far-field thermal emitters. Nature materials, 18(9), 920-930. DOI: https://doi.org/10.1038/s41563-019-0363-y

Mahulikar, S. P., Rao, G. A., & Kolhe, P. S. (2006). Infrared signatures of low-flying aircraft and their rear fuselage skin's emissivity optimization. Journal of Aircraft, 43(1), 226-232. DOI: https://doi.org/10.2514/1.15365

Thompson, J., Vaitekunas, D., & Birk, A. M. (1998, January). IR signature suppression of modern naval ships. In ASNE 21st century combatant technology symposium (Vol. 1, pp. 27-30).

Zhu, H., Li, Q., Tao, C., Hong, Y., Xu, Z., Shen, W., ... & Qiu, M. (2021). Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature communications, 12(1), 1-8. DOI: https://doi.org/10.1038/s41467-021-22051-0

INFRARED PROCESSING AND ANALYSIS CENTER. Near, mid & far infrared. https://www.icc.dur.ac.uk/~tt/Lectures/Galaxies/Images/Infrared/Regions/irregions.html. Last access: November 16, 2022.

Feng, X., Xie, X., Pu, M., Ma, X., Guo, Y., Li, X., & Luo, X. (2020). Hierarchical metamaterials for laser-infrared-microwave compatible camouflage. Optics express, 28(7), 9445-9453. DOI: https://doi.org/10.1364/OE.388335

Qu, Y., Li, Q., Cai, L., Pan, M., Ghosh, P., Du, K., & Qiu, M. (2018). Thermal camouflage based on the phase-changing material GST. Light: Science & Applications, 7(1), 1-10. DOI: https://doi.org/10.1038/s41377-018-0038-5

Kim, T., Bae, J. Y., Lee, N., & Cho, H. H. (2019). Hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Advanced Functional Materials, 29(10), 1807319. DOI: https://doi.org/10.1002/adfm.201807319

Pan, M., Huang, Y., Li, Q., Luo, H., Zhu, H., Kaur, S., & Qiu, M. (2020). Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy, 69, 104449. DOI: https://doi.org/10.1016/j.nanoen.2020.104449

Peng, L., Liu, D., Cheng, H., Zhou, S., & Zu, M. (2018). A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials, 6(23), 1801006. DOI: https://doi.org/10.1002/adom.201801006

Osgouei, A. K., Buhara, E., Khalichi, B., Ghobadi, A., & Ozbay, E. (2021, October). Wavelength selectivity in a polarization-insensitive metamaterial-based absorber consistent with atmospheric absorption windows. In 2021 IEEE Photonics Conference (IPC) (pp. 1-2). IEEE. DOI: https://doi.org/10.1109/IPC48725.2021.9592971

Lide, D. R. (2004). CRC Handbook of Chemistry and Physics, 84th. Electrochemical Series. CRC Press LLC.

Beaini, R., Baloukas, B., Loquai, S., Klemberg-Sapieha, J. E., & Martinu, L. (2020). Thermochromic VO2-based smart radiator devices with ultralow refractive index cavities for increased performance. Solar Energy Materials and Solar Cells, 205, 110260. DOI: https://doi.org/10.1016/j.solmat.2019.110260