Design and Development of Decision Support System Software for Digital Record Creation and Reporting in Transfer Centers

Yunus Karaman

MNG Kargo R&D Center

https://orcid.org/0009-0005-7561-3981

Gönül Beril Aksu

MNG Kargo R&D Center

https://orcid.org/0009-0002-7472-9972

Nimet Karagöz

MNG Kargo R&D Center

https://orcid.org/0000-0002-6563-8393

Esin Çevik

MNG Kargo R&D Center

https://orcid.org/0000-0002-3334-1077

DOI: https://doi.org/10.56038/oprd.v5i1.512

Keywords: Operasyonel Verimlilik, Gerçek Zamanlı İzleme, Maliyet ve Risk Yönetimi, Doğru sınıflandırma, Makine Öğrenimi


Abstract

Within the scope of the logistics sector, records kept manually or via Excel for situations such as vehicles, transported goods, cargo and barcodes that do not comply with the procedure in transfer centers cause data loss and reporting difficulties and reduce operational efficiency. This is one of the biggest problems facing the industry. This brief paper discusses the design and development of software that provides digital record creation, storage and reporting in order to prevent this. The digital minutes system developed within the scope of the project automates the functions of vectorizing and classifying minute texts by using text mining and machine learning algorithms. The artificial intelligence-supported classification model was evaluated with accuracy, F1 Score, Sensitivity and Sensitivity metrics, and the system aims to provide a user-friendly decision support software by making fast and accurate classification. The digital record system improves cost and risk management by providing early detection of operational errors, instant reporting and retrospective analysis. 


References

Borgi, T., Zoghlami, N., Abed, M., & Naceur, M. S. (2017). Big data for operational efficiency of transport and logistics: A review. In Proceedings of the 6th IEEE International Conference on Advanced Logistics and Transport (ICALT) (pp. 113–118). IEEE, 2017. DOI: https://doi.org/10.1109/ICAdLT.2017.8547029

Albayrak, E. (2019). Dijital dönüşüm ve lojistik operasyonlarında verimlilik artışı. İstanbul, Türkiye: Sinerji Yayınları, 2019.

Aylak, B. L., Oral, O., & Yazıcı, K. (2021). Yapay zeka ve makine öğrenmesi tekniklerinin lojistik sektöründe kullanımı. El-Cezeri Journal of Science and Engineering, 8(1), 74–93., 2021, doi: 10.31202/ecjse.776314. DOI: https://doi.org/10.31202/ecjse.776314

Liu, H., Islam, S. M. N., Liu, X., & Wang, J. (2020). Strategy-oriented digital transformation of logistics enterprises: The roles of artificial intelligence and blockchain. In Proceedings of the Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA) (pp. 1–6). IEEE, doi: 10.1109/CITISIA50690.2020.9371847. DOI: https://doi.org/10.1109/CITISIA50690.2020.9371847

Guveyi, E., Aktas, M. S., & Kalipsiz, O. (2020). Human factor on software quality: A systematic literature review. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, C. M. Torre, & Y. Karaca (Eds.), Computational Science and Its Applications – ICCSA 2020. Lecture Notes in Computer Science (pp. 918–930). Springer. DOI: https://doi.org/10.1007/978-3-030-58811-3_65

Aktas, M. S., & Kapdan, M. (2016). Structural code clone detection methodology using software metrics. International Journal of Software Engineering and Knowledge Engineering, 26(2), 307–332. DOI: https://doi.org/10.1142/S0218194016500133

Oz, M., Kaya, C., Olmezogullari, E., & Aktas, M. S. (2021). On the use of generative deep learning approaches for generating hidden test scripts. International Journal of Software Engineering and Knowledge Engineering, 31(10), 1447–1468. DOI: https://doi.org/10.1142/S0218194021500480

Oguz, R.F., Oz, M., Olmezogullari, E., Aktas, M. S. (2022). Extracting Information from Large Scale Graph Data: Case Study on Automated UI Testing, Euro-Par 2021: Parallel Processing Workshops, LNCS,volume 13098. DOI: https://doi.org/10.1007/978-3-031-06156-1_29

Uzun-Per, M., Can, A. B., Gurel, A. V., & Aktas, M. S. (2021). Big data testing framework for recommendation systems in e-science and e-commerce domains. 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9672082

Erdem, I., Oguz, R. F., Olmezogullari, E., & Aktas, M. S. (2021). Test script generation based on hidden Markov models learning from user browsing behaviors 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9671312

Düzen, Z., & Aktas, M. S. (2016). An approach to hybrid personalized recommender systems. 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 2-5 Ağustos 2016, Sinaia, Romanya. DOI: https://doi.org/10.1109/INISTA.2016.7571865

Uzun-Per, M., Gurel, A. V., Can, A. B., & Aktas, M. S. (2022). Scalable recommendation systems based on finding similar items and sequences. Concurrency and Computation: Practice and Experience, 34(20). DOI: https://doi.org/10.1002/cpe.6841