Comparative Analysis of Baseline Vnet and Unet Architectures on Pancreas Segmentation
Azim Uslucuk
Bartın University
https://orcid.org/0009-0000-0724-3337
Hakan Öcal
Bartın University
https://orcid.org/0000-0002-8061-8059
DOI: https://doi.org/10.56038/oprd.v3i1.309
Keywords: Artificial Intelligence, Deep Learning, Artificial Neural Networks, Pancreas, Segmentation
Abstract
The pancreas is one of the vital organs in the human body. It has an essential role in the digestive system and endocrine system. Diseases such as cancer, diabetes, hormonal problems, pancreatitis, and digestive problems occur in pancreatic disorders. In detecting pancreatic disorders, first blood and urine tests are requested. If further examination is needed, CT (Computed Tomography), MR (Magnetic Resonance), and EUS (Endoscopic Ultrasonography) imaging methods are used. Pancreas segmentation is generally the process of defining and drawing the lines of the pancreas from medical images such as CT and MRI. The size and shape of the pancreas varies from person to person. Manual segmentation of the pancreas is time-consuming and varies between physicians. Recently, deep learning-based segmentation methods that achieve high-performance results in organ segmentation have become trendy. In this study, Unet and Vnet architectures were comparatively analyzed on the NIH-CT-82 dataset. As a result of the ablation studies, a validation sensitivity of 0.9978 and a validation loss of 0.041 were obtained in the Unet architecture. In the training with the Vnet architecture, 0.9975 validation sensitivity and 0.046 validation loss values were obtained, respectively.
References
H. Kasban, M. A. M. El-Bendary, and D. H. Salama, “A Comparative Study of Medical Imaging Techniques,” Int. J. Inf. Sci. Intell. Syst., vol. 4(2), pp. 37–58, 2015, [Online]. Available: https://ilearn.th-deg.de/pluginfile.php/480243/mod_book/chapter/8248/updated_JXIJSIS2015.pdf
M. Aljabri and M. AlGhamdi, “A review on the use of deep learning for medical images segmentation,” Neurocomputing, vol. 506, pp. 311–335, Sep. 2022, doi: 10.1016/j.neucom.2022.07.070. DOI: https://doi.org/10.1016/j.neucom.2022.07.070
A. Derin, C. Gurkan, A. Budak, and H. KARATAŞ, “Pancreas Segmentation Using U-Net Based Segmentation Networks in CT Modality: A Comparative Analysis,” Avrupa Bilim Ve Teknol. Derg., no. 40, pp. 94–98, 2022, Accessed: Oct. 07, 2023. [Online]. Available: https://dergipark.org.tr/en/pub/ejosat/article/1171803
Y. Wang et al., “Pancreas segmentation using a dual-input v-mesh network,” Med. Image Anal., vol. 69, p. 101958, Apr. 2021, doi: 10.1016/j.media.2021.101958. DOI: https://doi.org/10.1016/j.media.2021.101958
Y. Zhou, L. Xie, W. Shen, Y. Wang, E. K. Fishman, and A. L. Yuille, “A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans,” in Medical Image Computing and Computer Assisted Intervention − MICCAI 2017, M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. L. Collins, and S. Duchesne, Eds., in Bilgisayar Bilimleri Ders Notları. Cham: Springer International Publishing, 2017, pp. 693–701. doi: 10.1007/978-3-319-66182-7_79. DOI: https://doi.org/10.1007/978-3-319-66182-7_79
O. Oktay et al., “Attention U-Net: Learning Where to Look for the Pancreas.” arXiv, May 20, 2018. Accessed: Oct. 26, 2023. [Online]. Available: http://arxiv.org/abs/1804.03999
T. ŞENTÜRK and F. LATİFOĞLU, “Biyomedikal Görüntülerin Bölütlenmesine Yönelik Derin Öğrenmeye Dayalı Yöntemler: Bir Gözden Geçirme,” Dicle Üniversitesi Fen Bilim. Enstitüsü Derg., vol. 12, no. 1, pp. 161–187, 2023, Accessed: Oct. 07, 2023. [Online]. Available: https://dergipark.org.tr/en/pub/dufed/issue/75551/1181996 DOI: https://doi.org/10.55007/dufed.1181996
F. Yuan, Z. Zhang, and Z. Fang, “An effective CNN and Transformer complementary network for medical image segmentation,” Pattern Recognit., vol. 136, p. 109228, Apr. 2023, doi: 10.1016/j.patcog.2022.109228. DOI: https://doi.org/10.1016/j.patcog.2022.109228
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 9351, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., in Lecture Notes in Computer Science, vol. 9351. , Cham: Springer International Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28. DOI: https://doi.org/10.1007/978-3-319-24574-4_28
F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV), Oct. 2016, pp. 565–571. doi: 10.1109/3DV.2016.79. DOI: https://doi.org/10.1109/3DV.2016.79
Ayhan M S, Kühlewein L, Aliyeva G, Inhoffen W, Ziemssen F, Berens P. “Expert-validated
estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy
detection”. Med. Image Anal. 64, 101724, 2020. DOI: https://doi.org/10.1016/j.media.2020.101724
A. G. Eker and N. Duru, “Medikal Görüntü İşlemede Derin Öğrenme Uygulamaları,” Acta Infologica, vol. 5, no. 2, Art. no. 2, Dec. 2021, doi: 10.26650/acin.927561. DOI: https://doi.org/10.26650/acin.927561
P. Paithane and S. Kakarwal, “LMNS-Net: Lightweight Multiscale Novel Semantic-Net deep learning approach used for automatic pancreas image segmentation in CT scan images,” Expert Syst. Appl., vol. 234, p. 121064, Dec. 2023, doi: 10.1016/j.eswa.2023.121064. DOI: https://doi.org/10.1016/j.eswa.2023.121064
W. Choi et al., “Novel Deep Learning Segmentation Models for Accurate GTV and OAR Segmentation in MR-Guided Adaptive Radiotherapy for Pancreatic Cancer Patients,” Int. J. Radiat. Oncol., vol. 117, no. 2, Supplement, p. e462, Oct. 2023, doi: 10.1016/j.ijrobp.2023.06.1660. DOI: https://doi.org/10.1016/j.ijrobp.2023.06.1660
Z. Zhang, L. Yao, E. Keles, Y. Velichko, and U. Bagci, “Deep Learning Algorithms for Pancreas Segmentation from Radiology Scans: A Review,” Adv. Clin. Radiol., vol. 5, no. 1, pp. 31–52, Sep. 2023, doi: 10.1016/j.yacr.2023.05.001. DOI: https://doi.org/10.1016/j.yacr.2023.05.001
H. R. Roth et al., “DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation.” arXiv, Jun. 21, 2015. Accessed: Dec. 05, 2023. [Online]. Available: http://arxiv.org/abs/1506.06448
D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” CoRR, Dec. 2014, Accessed: Dec. 05, 2023. [Online]. Available: https://www.semanticscholar.org/paper/a6cb366736791bcccc5c8639de5a8f9636bf87e8