Investigation of Cooling Systems Faults, Control and Management Models
Main Article Content
Abstract
With the rapid increase in population in the world, people's demands for chilled and frozen foods are also increasing. The healthy and energy efficient cold storage of foods has become an important issue. In this context, studies on the efficiency and performance of energy management models including automatic control techniques on cooling systems have been investigated in recent years. The purpose of this study is to give information about faults, traceable energy management models and control systems in the perspective of cooling systems.
Maintenance of cooling systems, malfunctions and their late detection cause time and cost problems. The decrease in the performance of the cooling system or the occurrence of malfunctions cause economic costs as well as energy consumption. Controlling the changes in pressure, temperature and electricity consumption values in cooling systems and comparing them with standard operating conditions is one of the methods used for fault detection. Faults that may occur in cooling systems; compressor, condenser, evaporator, expansion element and fan failures, thermal failures, phase protection relay failures, under/over refrigerant charge, probe failures, night curtain electric motor failure, condenser-evaporator surface pollution. Errors and malfunctions occurring in the cycle cause the parameters under normal operating conditions and accordingly the cooling performance coefficient to change. Traceable energy management models are needed to detect faults and prevent them in a short time. With the design and implementation of these models, long-term damage to the system is prevented by reducing energy, maintenance and repair costs.
In the design of traceable energy management models and control systems for cooling systems; set point and management, alarm notification and management, designing algorithms with precise temperature control will provide energy efficiency.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
H. Khayyam, A. Z. Kouzani, E. J. Hu, S. Nahavandi, “Coordinated Energy Management Of Vehicle Air Conditioning System”, Applied Thermal Engineering, cilt 31(5), s. 750-764, Nisan 2011. DOI: https://doi.org/10.1016/j.applthermaleng.2010.10.022
M. Aktaş, A. Aktaş, S. Bilgin, F. N. Erdoğmuş, M. Öder, “Soğutma Sistemlerinde Kondenser Yüzey Kirliliğinin Kontrol Edilmesine Yönelik Akıllı Fan Yönetim Algoritma Tasarımı”, 2. Başkent Uluslararası Multidisiplinler Çalışma Kongresi, Ankara, 2022, s. 410-417.
F. W. Yu, K. T. Chan, “Modelling Of A Condenser-Fan Control For An Air-Cooled Centrifugal Chiller”, Applied Energy, cilt 84(11), s. 1117-1135., Kasım 2007. DOI: https://doi.org/10.1016/j.apenergy.2007.05.004
D. Rodriguez, G. Bejarano, J. A. Alfaya, M. G. Ortega, “Robust and Decoupling Approach to PID Control of Vapour-compression Refrigeration Systems”, IFAC-PapersOnLine, cilt 51(4), s. 698-703, 2018. DOI: https://doi.org/10.1016/j.ifacol.2018.06.185
J. E. Braun, “Automated Fault Detection and Diagnostics for Vapor Compression Cooling Equipment”, Solar Energy Engineering, cilt 125(3), s. 266-274, Ağustos 2003. DOI: https://doi.org/10.1115/1.1591001
Z. Wang, L. Wang, K. Liang, Y. Tan, “Enhanced Chiller Fault Detection Using Bayesian Network And Principal Component Analysis”, Applied Thermal Engineering, cilt 141, s. 898-905, Ağustos 2018. DOI: https://doi.org/10.1016/j.applthermaleng.2018.06.037
G. Bogdanovská, V. Molnar, G. Fedorko, “Failure Analysis Of Condensing Units For Refrigerators With Refrigerant R134a, R404A”, International Journal of Refrigeration, cilt 100, s. 208-219, Nisan 2019. DOI: https://doi.org/10.1016/j.ijrefrig.2018.11.028
S.S. Franco, J.R. Henríquez, A.A.V. Ochoa, J.A.P da Costa, K.A. Ferraz, “Thermal Analysis and Development of PID Control for Electronic Expansion Device of Vapor Compression Refrigeration Systems”, Applied Thermal Engineering, cilt 206, s. 118130, Nisan 2022. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118130
N. Henry, W G. Munan, A. A. Azhar, K. Sumeru, A. L. Zulkarnain, “Energy Analysis and Compressor Performance of Refrigerator System Using Programmable Logic Control (PLC)”, Applied Mechanics and Materials, cilt 554, s. 469–473, Haziran 2014. DOI: https://doi.org/10.4028/www.scientific.net/AMM.554.469
O. Ekren, S. Şahin, Y. İşler, “Comparison of Different Controllers for Variable Speed Compressor and Electronic Expansion Valve”, International Journal of Refrigeration, cilt 33, s. 1161-1168, Eylül 2010. DOI: https://doi.org/10.1016/j.ijrefrig.2010.05.005
S. Erten, C. Ocak, M. Aktaş, “Endüstriyel Soğutma Sistemlerinde Fan Performansının Deneysel Analizi”, 3. Uluslararası Akademik Araştırmalar Kongresi (ICAR), Online, 2020, s. 627-638.
A. N. Malik, S. A. Khan, I. Lazoglu, “A Novel Demand-Actuated Defrost Approach Based on The Real-Time Thickness of Frost for The Energy Conservation of a Refrigerator”, International Journal of Refrigeration, cilt 131, s. 168-177, Kasım 2021. DOI: https://doi.org/10.1016/j.ijrefrig.2021.07.032
H. Bulgurcu, S. Yaşar, “Soğutma Sistem Arızalarının P-h Diyagramı Yardımıyla Teşhis Edilmesi”, X. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 2011, s. 1265-1281.
Tesisat. (1 Mart 2023). Kompresör arıza nedenlerinin giderilmesi (Online). https://www.tesisat.org/kompresor-arizalari-nedenleri-giderilmesi.html
N. Özkol, Uygulamalı Soğutma Tekniği, 6. baskı, Ankara: Makine Mühendisleri Odası, 2004.
A.R. Al-Badri, A.H. Al-Hassani, “Control Method Using Adaptive Setting of Electronic Expansion Valve for Water Chiller Systems Equipped with Variable Speed Compressors”, International Journal of Refrigeration, cilt 119, s. 102-109. Kasım 2020. DOI: https://doi.org/10.1016/j.ijrefrig.2020.06.008
M. Koşan, S. Erten, İ. Çetinbaş, M. Demirtaş, F. N. Erdoğmuş, E. Demirci, “Endüstriyel Soğutucular İçin Değişken Devirli Kompresör Teknolojisinin Verim Parametreleri”, II. Uluslararası Bilim ve İnovasyon Kongresi, Online, 2021, s 188-195.
M. Salazar, F. Méndez, “PID Control for A Single-Stage Transcritical CO2 Refrigeration Cycle”, Applied Thermal Engineering, cilt 67 (1-2), s. 429-438, Haziran 2014. DOI: https://doi.org/10.1016/j.applthermaleng.2014.03.052
R. M., Kagami, G. Reynoso-Meza, E. A. P. Santos, R. Z. Freire, “Control of a Refrigeration System Benchmark Problem: An Approach based on COR Metaheuristic Algorithm and TOPSIS Method”, IFAC-PapersOnLine, cilt 52 (11), s. 85–90, 2019. DOI: https://doi.org/10.1016/j.ifacol.2019.09.122
A. S. Silveira, M. D. C. de Oliveira, A.T. Neto, C. J. L. Hermes, “Least power point tracking (LPPT) control for refrigeration systems running with variable-speed compressors”, International Journal of Refrigeration, cilt 125, s.132-137, Mayıs 2021. DOI: https://doi.org/10.1016/j.ijrefrig.2021.01.002