
 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 43

Conference Article

A Modular Semantic Kernel Agent for Automated Code

Review and Refactoring Feedback

Semih Yazıcı1*, Seza Dursun2, Bahar Önel3, Tülin Işıkkent 4 , Sedat Çelik5, Erem Karalar6, Mert Alacan7,

1Boyner, Orcid ID: https://orcid.org/ 0009-0006-4503-0256

e-mail:semih.yazici@boyner.com.tr Tel: 0554 693 8626
2 Boyner, Orcid ID: https://orcid.org/0000-0003-1389-072X

e-mail: seza.dursun@boyner.com.tr Tel: 0533 614 59 23
3 Boyner, Orcid ID: https://orcid.org/0009-0007-4597-6591, e-mail:bahar.onel@boyner.com.tr

4 Boyner, Orcid ID: https://orcid.org/0009-0005-5775-0093 , e-mail:tulin.isikkent@boyner.com.tr
5 Boyner, Orcid ID: https://orcid.org/0009-0003-0335-6440 sedat.celik@boyner.com.tr Tel: 0553 824 00 47

6 Boyner, Orcid ID: https://orcid.org/0000-0001-6289-9275 e-mail:erem.karalar@boyner.com.tr
7 Boyner, Orcid ID: https://orcid.org/0000-0003-3893-6309 e-mail:mert.alacan@boyner.com.tr

*

Received: 25 June 2025

Revised: 21 September 2025

2nd Revised: 12 October 2025

Accepted: 26 October 2025

Published: 31 December 2025

This is an open access article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license.

Reference: Yazıcı, S., Dursun, S., Önel, B., Işıkkent, T., Çelik, S., Karalar, E., & Alacan, M. (2025). A modular

semantic kernel agent for automated code review and refactoring feedback. Orclever Proceedings of

Research and Development, 7(1), 43–54.

Abstract

In modern software development, maintaining clean, efficient, and reliable code is critical to team

productivity and product quality. This paper introduces a modular Large Language Model (LLM)-

based agent, designed using Microsoft’s Semantic Kernel framework, for automated code review

and refactoring feedback. The agent leverages plugin-based function orchestration, Retrieval-

Augmented Generation (RAG), and dynamic prompt engineering to analyze source code across

multiple dimensions; including readability, efficiency, security, and adherence to best practices.

Integrated into CI/CD pipelines and broader SDLC workflows, the system provides contextual

insights, the system provides contextual insights, suggests specific improvements, and explains

reasoning for each recommendation. Evaluation results across real-world open-source repositories

https://orcid.org/0009-0005-5775-0093
Tel:0553
https://orcid.org/0000-0003-3893-6309?lang=en

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 44

demonstrate the agent’s effectiveness in reducing human review time while improving refactor

quality. The modular design ensures adaptability to various programming languages and

enterprise development environments. This research highlights the potential of agentic LLM

systems to augment software engineering workflows with intelligent, transparent, and developer-

aligned feedback mechanisms.

Keywords: Code Review, Semantic Kernel, Plugin Orchestration, Refactoring, Large

Language Models, Agentic AI, Retrieval-Augmented Generation, Prompt Engineering

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 45

1. Introduction

Code review remains a cornerstone of modern software development, ensuring quality,

maintainability, and collaboration across development teams. Yet, manual reviews are

often time-consuming, error-prone, and limited by the expertise of individual reviewers.

In parallel, the growing complexity of codebases and continuous integration demands

have increased the need for scalable, consistent, and context-aware feedback

mechanisms.

Recent advances in Large Language Models (LLMs) have introduced new possibilities in

automated code analysis, enabling models to reason about code structure, suggest

improvements, and even perform refactoring tasks. However, these capabilities often

remain locked within monolithic applications or static pipelines that lack modularity,

domain adaptability, and real-time integration with developer workflows.

To address these limitations, we propose a modular, Semantic Kernel-based agentic

architecture for intelligent code review and refactoring guidance. The system leverages

Microsoft’s Semantic Kernel framework to orchestrate plugin functions dynamically,

enabling the agent to interact with code, documentation, and retrieval systems in a

coherent, multi-turn fashion. With built-in support for Retrieval-Augmented Generation

(RAG), prompt engineering, and plugin chaining, the agent provides real-time,

explainable feedback on code quality, security, and best practices.

In this study, we demonstrate how the proposed agent is designed to be adaptable across

programming languages, easily integrated into CI/CD pipelines and automated review

stages within the SDLC, and extensible with custom plugins. We present its architecture,

function orchestration logic, and real-world evaluation on open-source projects. This

work aims to bridge the gap between static linters and dynamic human-like reviewers,

contributing to the broader vision of intelligent software engineering assistance through

agentic AI systems.

2. Materials and Methods

This section outlines the technical foundation and implementation methodology of the

proposed Semantic Kernel-based modular code review agent. Our approach integrates

various components from the Microsoft Semantic Kernel ecosystem, custom plugin

functions, retrieval-augmented prompting, and structured evaluation scenarios to ensure

robust, explainable, and context-aware code analysis.

We divide the system architecture into four major pillars: (1) the modular integration of

Semantic Kernel within an agentic framework, (2) the design of reusable plugin functions

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 46

tailored for code understanding and refactoring, (3) the orchestration of prompt

engineering techniques and retrieval pipelines, and (4) the evaluation setup through

simulated and real-world code review scenarios. Each component is detailed in the

subsections below to illustrate how the system achieves dynamic interaction, scalability,

and developer-aligned feedback mechanisms

2.1.System Architecture and Semantic Kernel Integration

The proposed agent system is developed on top of Microsoft’s Semantic Kernel (SK),

offering a modular and extensible architecture tailored for automated code review and

refactoring feedback. Designed to operate as both a standalone tool and a component

within multi-agent ecosystems, the system enables seamless integrated into enterprise-

scale CI/CD workflows and automated quality gates.

At the heart of the architecture lies the SK Planner, which leverages large language

models to dynamically compose execution plans based on user intent. Rather than relying

on pre-defined prompt chains, the planner interprets natural language queries and

autonomously orchestrates relevant semantic functions and plugins. This mechanism

provides zero-shot task planning capabilities across a broad spectrum of review

functions. The system follows a two-stage operational pipeline. In the first stage, the user

input is analyzed to identify intent and contextual needs, leading the planner to construct

a reasoning path by selecting appropriate plugin functions, such as code parsing, pattern

extraction, or style evaluation. In the second stage, these functions are executed in a

sequential or parallel manner depending on the complexity and scope of the request. The

outputs are then interpreted, refined, and returned to the user, with the ability to trigger

further analysis based on semantic uncertainty. This architectural design supports

modular parallelism, allowing for concurrent evaluation of independent code aspects

such as naming conventions, formatting consistency, cyclomatic complexity, or

documentation quality. Additionally, it enables stateful multi-turn interactions, where

the agent retains contextual memory to support iterative review and refactoring cycles

across session history.

The architecture also supports retrieval-augmented capabilities, where the agent can

access codebase embeddings, previous code reviews, or best-practice repositories to

ground its recommendations. By combining neural planning, symbolic reasoning, and

plugin-based function invocation, the system delivers scalable and intelligent automation

for code analysis. [Figure 1]

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 47

Figure 1: System Architecture

2.2.Plugin and Function Design

The agent’s functionality is powered by a set of carefully engineered Semantic Kernel

plugins, each comprising modular functions tailored to discrete code review tasks. These

plugins are implemented as lightweight, stateless wrappers around Python scripts,

enabling seamless orchestration by the SK Planner and facilitating rapid extensibility.

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 48

Each function is defined with a standardized schema specifying input parameters, output

expectations, and a natural language description of its role. This enables large language

models to reason about available capabilities and assemble them dynamically into task-

specific execution chains without requiring manual prompt design. For instance, the

'review changes' feature allows the CI/CD system to review code changes that have been

pushed to the repository, while 'analyse' examines the semantic meaning of the code to

understand its purpose and functionality. To support both lexical and semantic-level

analysis, the system integrates plugins that operate at multiple abstraction layers. Syntax-

level functions utilize abstract syntax tree (AST) parsing and static code analysis, whereas

semantic functions incorporate LLM-based reasoning to evaluate code quality,

readability, or architectural coherence. This hybrid design allows the agent to produce

both deterministic insights and creative refactoring suggestions. Function

interoperability is a critical design goal. Many plugins are designed to be composable—

where the output of one function, such as dependency resolution, feeds directly into

another that performs complexity estimation. This composability enables the planner to

construct multi-step workflows such as: (1) extract code structure, (2) identify high-

complexity areas, and (3) recommend specific re-factorings. Furthermore, plugins are

grouped under namespaces that correspond to domain-specific roles. For example, the

“CodeReviewer” namespace includes functions for naming conventions, docstring

evaluation, and test coverage estimation, while the Re-factoringAdvisor namespace

focuses on suggesting best practices, code modularization, and legacy code upgrades.

This structure facilitates controlled exposure of capabilities depending on user profile

and use case.

All plugins are evaluated against a test suite comprising real-world code samples drawn

from open-source repositories. Functions are assessed for precision, relevance, and

execution latency to ensure their applicability in production scenarios. This rigorous

evaluation supports the agent’s reliability and scalability, making it suitable for both real-

time developer assistance and offline batch review workflows.

2.3.Prompt Engineering and RAG Pipeline

To enable contextual and modular reasoning across varied code review tasks, the agent

leverages a dynamic prompt engineering strategy aligned with the Retrieval-Augmented

Generation (RAG) framework. The underlying objective is to ground large language

model (LLM) responses in domain-specific knowledge while maintaining generalization

capabilities across diverse codebases [1].

Each plugin function within the Semantic Kernel agent is registered with a detailed

natural language description, input-output schema, and execution intent. These

descriptions are indexed into a vector database using the text-embedding-3-small model,

selected for its low latency and high semantic fidelity in short-form instruction encoding

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 49

[2]. When the agent receives a user query or task description (e.g., "refactor this function

to improve readability"), a vector search retrieves the top-k relevant plugin functions

from the semantic memory. This mechanism constitutes the first phase of the RAG

pipeline—retrieval. To enhance recall precision, the system also appends code context

(e.g., parsed AST nodes or symbol tables) as supporting documents during the

embedding process. The retrieved content is formatted into structured prompts through

a templating engine that conditionally includes tool signatures, user instructions, and

historical memory snippets. This dynamic prompt construction enables multi-turn

conversation continuity and context retention without persistent session storage. The

generation phase is handled by OpenAI's gpt-4o model, selected for its superior

instruction-following behavior and reduced prompt latency in comparison to earlier

GPT-4 variants [3]. The prompt includes the selected plugin’s description, code snippet,

and any prior reasoning steps to support chain-of-thought responses. For instance, when

performing multi-agent reasoning: e.g., identifying a complexity issue and then

suggesting a refactor: the output of the first agent is embedded into the prompt for the

next, ensuring coherent progression across tasks. To mitigate hallucination risks and

control temperature-sensitive outputs, prompt engineering guidelines enforce

temperature limits (e.g., 0.2–0.4 for factual assessments) and discourage unsupported

recommendations through disclaimer cues. Additionally, function-specific "prompt

rules" such as “Only respond using the function's scope” or “Use PEP8 guidelines unless

otherwise specified” are automatically inserted into the completion payload. This

orchestration results in a hybrid reasoning loop: LLM-based understanding is

continuously augmented with semantically aligned plugin capabilities, enabling both

natural language explanation and executable code transformation. Such a RAG-

augmented agentic approach aligns with recent advancements in modular LLM

orchestration and function-calling pipelines [3].

2.4.Evaluation Setup and Use Case Scenarios

To empirically evaluate the efficacy of the modular Semantic Kernel agent, we designed

a multi-stage assessment protocol involving synthetic benchmarks and real-world

codebases. The goal was to measure the agent’s ability to provide accurate, context-aware

code reviews and actionable refactoring suggestions across diverse programming

scenarios. The evaluation framework consisted of three complementary setups. First, a

curated dataset of 200 Python functions was compiled from open-source repositories,

covering a wide range of common software engineering concerns such as code smells,

complexity violations, and non-conforming naming conventions. These functions were

reviewed both by the Semantic Kernel agent and a panel of human reviewers with at least

three years of professional software development experience. The results were compared

based on the precision, relevance, and clarity of suggestions, with scoring metrics

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 50

adapted from prior work on automated code feedback systems [11]. Second, a synthetic

suite of 50 coding prompts was designed to probe the robustness of plugin selection and

prompt routing under ambiguous user inputs (e.g., "Can you improve this?", "Is this code

clean?"). These prompts were injected into the system with varied code contexts and

measured for correctness of plugin invocation, retrieval hit accuracy, and LLM response

fidelity. The aim was to test the alignment between vector-based retrieval and functional

intent detection, particularly in multi-agent interaction scenarios. Third, a real-world case

study was conducted using a production-grade microservice written in Python and

TypeScript. The Semantic Kernel agent was tasked with generating iterative feedback on

specific modules—such as authentication handlers, data access layers, and configuration

scripts. The outputs were analyzed for (i) suggestion redundancy, (ii) hallucination rate,

and (iii) correctness of syntax-aware transformations. These use cases allowed us to

evaluate how well the agent maintained reasoning consistency and modularity over

extended review chains. To quantify user-perceived usefulness, a post-evaluation survey

was conducted among 12 developers who used the agent in a simulated code review

sprint. Feedback indicated that the system improved the clarity and structure of

refactoring recommendations, while reducing the overhead of manually locating relevant

linters or static analysis tools. However, the evaluation also revealed limitations in

handling multi-language codebases and deeply nested asynchronous workflows,

pointing to directions for future refinement.

The integration of RAG-based retrieval, chain-of-thought prompting, and modular

plugin composition demonstrated significant advantages in task-specific adaptability

and low-latency code navigation. These findings position the Semantic Kernel agent as a

promising architecture for AI-assisted code analysis, aligning with recent developments

in tool-augmented LLM systems [7][8].

3. Results

The empirical evaluation of the Semantic Kernel-based agent yielded promising

outcomes across both quantitative and qualitative dimensions. The results indicate that

the modular and plugin-enhanced architecture not only facilitates accurate prompt

routing but also generates actionable code feedback aligned with developer expectations.

The architectural team further shared operational metrics that capture the agent’s real-

world influence on development workflows. Out of 836 AI-generated code review

suggestions, developers adopted and resolved 186 items, corresponding to a 22%

implementation rate. This level of uptake highlights a measurable first-wave benefit of

integrating AI into the review pipeline, showing that nearly one quarter of the agent’s

recommendations were deemed valuable enough to directly influence production code.

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 51

The synthetic prompt suite validated the agent’s capacity to route vague or

underspecified requests to the appropriate plugins. Of the 50 ambiguous prompts tested,

the orchestrator correctly identified the user’s intent and routed the query to the right

function in 92% of cases. This outcome underscores the robustness of the underlying

vector search mechanism and the benefit of slot-specific agent design.

The real-world case study on a microservice codebase further confirmed the utility of the

agent in practical settings. Across 12 different modules reviewed, the system produced

86 unique suggestions, of which 77% were deemed actionable by senior engineers during

post-hoc analysis. Furthermore, the hallucination rate, defined as syntactically incorrect

or semantically irrelevant suggestions; remained below 5.4%, outperforming baseline

LLM agents without retrieval or plugin integration by a significant margin [7].

Subjective feedback from the developer cohort involved in the final phase of testing

highlighted several perceived benefits of the system. Participants noted a reduction in

cognitive load when reviewing legacy code and praised the agent’s ability to surface style

violations that static analyzers typically overlook. However, feedback also pointed to

areas for improvement, including support for more programming languages, integration

with CI/CD pipelines, and the inclusion of memory modules for persistent feedback

tracking.

Overall, the results support the hypothesis that combining Retrieval-Augmented

Generation (RAG) with plugin-enabled function calls within a modular agentic

framework offers tangible benefits for code analysis tasks. The design choices adopted in

this study, particularly intent slotting, semantic reranking, and function-bound

execution, contributed significantly to performance improvements, consistent with

recent findings in tool-augmented AI systems [8][9]

4. Discussion and Conclusion

This study demonstrates the practical advantages of leveraging a modular, plugin-based

semantic agent framework rooted in the Semantic Kernel for conducting automated code

review and refactoring feedback generation. The integration of Retrieval-Augmented

Generation (RAG), function-calling capabilities, and slot-specific agent dispatch enabled

a robust orchestration mechanism that outperforms monolithic LLM-based code

reviewers both in accuracy and developer alignment.

The empirical findings affirm that such hybrid architectures mitigate the limitations of

end-to-end generative systems by anchoring responses in validated documentation, style

guides, and coding standards. The precision and recall metrics observed across

benchmark datasets reveal that the agent consistently produces relevant suggestions,

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 52

especially in areas such as complexity reduction, naming clarity, and test coverage

enhancement. These results validate prior claims regarding the efficacy of plugin-

augmented AI systems in code-related reasoning tasks [8][9].

Furthermore, the real-world use case on a distributed microservice architecture

uncovered several additional benefits. Developers reported improved explainability and

interpretability of feedback, suggesting that modular agent-based outputs—when paired

with transparent prompt chaining—can foster greater trust in AI-assisted tooling. This

aligns with the growing body of literature emphasizing human-AI co-piloting over fully

autonomous decision-making in software engineering contexts [10].

In parallel with these qualitative insights, the system’s pilot deployment provided an

additional perspective on its practical value in production environments. During internal

evaluation, the agent generated 836 code review suggestions, of which developers

adopted and resolved 186—corresponding to a 22% implementation rate. Although not

a direct measure of algorithmic accuracy, this adoption ratio serves as an early real-world

indicator of developer trust and perceived usefulness. The pattern of accepted

recommendations also reinforces the controlled-study findings, with a disproportionate

number of adopted items relating to readability improvements, modularization

suggestions, and surface-level complexity reductions. This convergence between

quantitative benchmarks and real-world adoption highlights the agent’s capacity to

complement developer workflows rather than merely automate them.

Nevertheless, the study is not without limitations. The agent's performance is contingent

upon well-structured plugin APIs and high-quality retrieval data. In poorly documented

or non-English codebases, the effectiveness of semantic reranking and prompt routing

may degrade. Additionally, the lack of persistent memory and contextual learning across

sessions restricts longitudinal codebase understanding—an area identified for future

enhancement.

Future work will explore extending the agent with memory modules, potentially

powered by vector stores such as ChromaDB or Milvus, to retain refactoring histories,

support long-term code evolution tracking, and enable personalized feedback loops.

Another promising direction involves multimodal integration, allowing the agent to

interpret UML diagrams, flowcharts, or architecture maps alongside textual code inputs,

thus broadening the spectrum of viable refactoring insights. Expanding support to

multilingual codebases and heterogeneous development stacks also remains an open

research direction.

In conclusion, this work contributes to the emerging literature on agentic AI for software

development by presenting a production-grade, modular Semantic Kernel-based

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 53

framework that offers scalable, extensible, and interpretable code review capabilities. By

aligning the system’s architecture with contemporary AI design principles—modularity,

retrieval grounding, prompt transparency, and function-specific control—this study

charts a viable pathway toward more intelligent, collaborative, and trustworthy

development tooling for modern engineering teams.

5. Acknowledges

We would like to thank the Boyner Group Data Science and IT teams for their

collaborative efforts, infrastructure support, and deployment coordination throughout

this project. Their ongoing contributions played a crucial role in aligning the Semantic

Kernel agent with real-world development workflows and organizational quality

standards.

 https://doi.org/10.56038/oprd.v7i1.739

Online ISSN: 2980-020X https://journals.orclever.com/oprd 54

References

[1] Microsoft. Semantic Kernel Documentation. https://learn.microsoft.com/en-us/semantic-

kernel

[2] OpenAI. Function Calling and Tool Use. https://platform.openai.com/docs/guides/function-

calling

[3] LangChain. Agents and Tool Use in LLM Applications.

https://docs.langchain.com/docs/components/agents/

[4] GitHub Copilot. “Your AI Pair Programmer.” https://github.com/features/copilot

[5] Raza, M., & Rasool, G. (2023). "LLM-Guided Software Development: Opportunities and

Threats." IEEE Software, 40(3), 27–35. https://doi.org/10.1109/MS.2023.3246537

[6] Jain, A., et al. (2022). "CodeBERT: A Pre-Trained Model for Programming and Natural

Languages." EMNLP Findings.

[7] Li, X., et al. (2023). "RefactorGPT: Code Refactoring via LLM Agents." arXiv preprint

arXiv:2307.09771.

[8] Fernandes, P., et al. (2023). "Improving Code Review Quality with AI Agents: A Modular

Pipeline." ACM Transactions on Software Engineering and Methodology.

[9] Kim, H., et al. (2023). "AI-Augmented Refactoring for Legacy Systems: An Empirical

Study." SoftwareX, 21, 101322.

[10] Wang, Z., et al. (2023). "Human-AI Co-Pilot Systems in Software Engineering: Design

Principles and Case Studies." ICSE '23: Proceedings of the 45th International Conference on

Software Engineering, 185–196.

[11] Chen, M., et al., “Evaluating Large Language Models Trained on Code,”

arXiv:2107.03374, 2021.

