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Abstract

In modern software development, maintaining clean, efficient, and reliable code is critical to team
productivity and product quality. This paper introduces a modular Large Language Model (LLM)-
based agent, designed using Microsoft’s Semantic Kernel framework, for automated code review
and refactoring feedback. The agent leverages plugin-based function orchestration, Retrieval-
Augmented Generation (RAG), and dynamic prompt engineering to analyze source code across
multiple dimensions; including readability, efficiency, security, and adherence to best practices.
Integrated into CI/CD pipelines and broader SDLC workflows, the system provides contextual
insights, the system provides contextual insights, suggests specific improvements, and explains
reasoning for each recommendation. Evaluation results across real-world open-source repositories
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demonstrate the agent’s effectiveness in reducing human review time while improving refactor
quality. The modular design ensures adaptability to various programming languages and
enterprise development environments. This research highlights the potential of agentic LLM
systems to augment software engineering workflows with intelligent, transparent, and developer-
aligned feedback mechanisms.

Keywords: Code Review, Semantic Kernel, Plugin Orchestration, Refactoring, Large
Language Models, Agentic Al, Retrieval-Augmented Generation, Prompt Engineering
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1. Introduction

Code review remains a cornerstone of modern software development, ensuring quality,
maintainability, and collaboration across development teams. Yet, manual reviews are
often time-consuming, error-prone, and limited by the expertise of individual reviewers.
In parallel, the growing complexity of codebases and continuous integration demands
have increased the need for scalable, consistent, and context-aware feedback
mechanisms.

Recent advances in Large Language Models (LLMs) have introduced new possibilities in
automated code analysis, enabling models to reason about code structure, suggest
improvements, and even perform refactoring tasks. However, these capabilities often
remain locked within monolithic applications or static pipelines that lack modularity,
domain adaptability, and real-time integration with developer workflows.

To address these limitations, we propose a modular, Semantic Kernel-based agentic
architecture for intelligent code review and refactoring guidance. The system leverages
Microsoft’s Semantic Kernel framework to orchestrate plugin functions dynamically,
enabling the agent to interact with code, documentation, and retrieval systems in a
coherent, multi-turn fashion. With built-in support for Retrieval-Augmented Generation
(RAG), prompt engineering, and plugin chaining, the agent provides real-time,
explainable feedback on code quality, security, and best practices.

In this study, we demonstrate how the proposed agent is designed to be adaptable across
programming languages, easily integrated into CI/CD pipelines and automated review
stages within the SDLC, and extensible with custom plugins. We present its architecture,
function orchestration logic, and real-world evaluation on open-source projects. This
work aims to bridge the gap between static linters and dynamic human-like reviewers,
contributing to the broader vision of intelligent software engineering assistance through
agentic Al systems.

2. Materials and Methods

This section outlines the technical foundation and implementation methodology of the
proposed Semantic Kernel-based modular code review agent. Our approach integrates
various components from the Microsoft Semantic Kernel ecosystem, custom plugin
functions, retrieval-augmented prompting, and structured evaluation scenarios to ensure
robust, explainable, and context-aware code analysis.
We divide the system architecture into four major pillars: (1) the modular integration of
Semantic Kernel within an agentic framework, (2) the design of reusable plugin functions
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tailored for code understanding and refactoring, (3) the orchestration of prompt
engineering techniques and retrieval pipelines, and (4) the evaluation setup through
simulated and real-world code review scenarios. Each component is detailed in the
subsections below to illustrate how the system achieves dynamic interaction, scalability,
and developer-aligned feedback mechanisms

2.1.System Architecture and Semantic Kernel Integration

The proposed agent system is developed on top of Microsoft’s Semantic Kernel (SK),
offering a modular and extensible architecture tailored for automated code review and
refactoring feedback. Designed to operate as both a standalone tool and a component
within multi-agent ecosystems, the system enables seamless integrated into enterprise-
scale CI/CD workflows and automated quality gates.

At the heart of the architecture lies the SK Planner, which leverages large language
models to dynamically compose execution plans based on user intent. Rather than relying
on pre-defined prompt chains, the planner interprets natural language queries and
autonomously orchestrates relevant semantic functions and plugins. This mechanism
provides zero-shot task planning capabilities across a broad spectrum of review
functions. The system follows a two-stage operational pipeline. In the first stage, the user
input is analyzed to identify intent and contextual needs, leading the planner to construct
a reasoning path by selecting appropriate plugin functions, such as code parsing, pattern
extraction, or style evaluation. In the second stage, these functions are executed in a
sequential or parallel manner depending on the complexity and scope of the request. The
outputs are then interpreted, refined, and returned to the user, with the ability to trigger
further analysis based on semantic uncertainty. This architectural design supports
modular parallelism, allowing for concurrent evaluation of independent code aspects
such as naming conventions, formatting consistency, cyclomatic complexity, or
documentation quality. Additionally, it enables stateful multi-turn interactions, where
the agent retains contextual memory to support iterative review and refactoring cycles
across session history.

The architecture also supports retrieval-augmented capabilities, where the agent can
access codebase embeddings, previous code reviews, or best-practice repositories to
ground its recommendations. By combining neural planning, symbolic reasoning, and
plugin-based function invocation, the system delivers scalable and intelligent automation
for code analysis. [Figure 1]
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Figure 1: System Architecture
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2.2.Plugin and Function Design

The agent’s functionality is powered by a set of carefully engineered Semantic Kernel
plugins, each comprising modular functions tailored to discrete code review tasks. These
plugins are implemented as lightweight, stateless wrappers around Python scripts,
enabling seamless orchestration by the SK Planner and facilitating rapid extensibility.
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Each function is defined with a standardized schema specifying input parameters, output
expectations, and a natural language description of its role. This enables large language
models to reason about available capabilities and assemble them dynamically into task-
specific execution chains without requiring manual prompt design. For instance, the
'review changes' feature allows the CI/CD system to review code changes that have been
pushed to the repository, while 'analyse’ examines the semantic meaning of the code to
understand its purpose and functionality. To support both lexical and semantic-level
analysis, the system integrates plugins that operate at multiple abstraction layers. Syntax-
level functions utilize abstract syntax tree (AST) parsing and static code analysis, whereas
semantic functions incorporate LLM-based reasoning to evaluate code quality,
readability, or architectural coherence. This hybrid design allows the agent to produce
both deterministic insights and creative refactoring suggestions. Function
interoperability is a critical design goal. Many plugins are designed to be composable —
where the output of one function, such as dependency resolution, feeds directly into
another that performs complexity estimation. This composability enables the planner to
construct multi-step workflows such as: (1) extract code structure, (2) identify high-
complexity areas, and (3) recommend specific re-factorings. Furthermore, plugins are
grouped under namespaces that correspond to domain-specific roles. For example, the
“CodeReviewer” namespace includes functions for naming conventions, docstring
evaluation, and test coverage estimation, while the Re-factoringAdvisor namespace
focuses on suggesting best practices, code modularization, and legacy code upgrades.
This structure facilitates controlled exposure of capabilities depending on user profile
and use case.

All plugins are evaluated against a test suite comprising real-world code samples drawn
from open-source repositories. Functions are assessed for precision, relevance, and
execution latency to ensure their applicability in production scenarios. This rigorous
evaluation supports the agent’s reliability and scalability, making it suitable for both real-
time developer assistance and offline batch review workflows.

2.3.Prompt Engineering and RAG Pipeline

To enable contextual and modular reasoning across varied code review tasks, the agent
leverages a dynamic prompt engineering strategy aligned with the Retrieval-Augmented
Generation (RAG) framework. The underlying objective is to ground large language
model (LLM) responses in domain-specific knowledge while maintaining generalization
capabilities across diverse codebases [1].

Each plugin function within the Semantic Kernel agent is registered with a detailed
natural language description, input-output schema, and execution intent. These
descriptions are indexed into a vector database using the text-embedding-3-small model,
selected for its low latency and high semantic fidelity in short-form instruction encoding
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[2]. When the agent receives a user query or task description (e.g., "refactor this function
to improve readability"), a vector search retrieves the top-k relevant plugin functions
from the semantic memory. This mechanism constitutes the first phase of the RAG
pipeline—retrieval. To enhance recall precision, the system also appends code context
(e.g., parsed AST nodes or symbol tables) as supporting documents during the
embedding process. The retrieved content is formatted into structured prompts through
a templating engine that conditionally includes tool signatures, user instructions, and
historical memory snippets. This dynamic prompt construction enables multi-turn
conversation continuity and context retention without persistent session storage. The
generation phase is handled by OpenAl's gpt-40 model, selected for its superior
instruction-following behavior and reduced prompt latency in comparison to earlier
GPT-4 variants [3]. The prompt includes the selected plugin’s description, code snippet,
and any prior reasoning steps to support chain-of-thought responses. For instance, when
performing multi-agent reasoning: e.g., identifying a complexity issue and then
suggesting a refactor: the output of the first agent is embedded into the prompt for the
next, ensuring coherent progression across tasks. To mitigate hallucination risks and
control temperature-sensitive outputs, prompt engineering guidelines enforce
temperature limits (e.g., 0.2-0.4 for factual assessments) and discourage unsupported
recommendations through disclaimer cues. Additionally, function-specific "prompt
rules" such as “Only respond using the function's scope” or “Use PEP8 guidelines unless
otherwise specified” are automatically inserted into the completion payload. This
orchestration results in a hybrid reasoning loop: LLM-based understanding is
continuously augmented with semantically aligned plugin capabilities, enabling both
natural language explanation and executable code transformation. Such a RAG-
augmented agentic approach aligns with recent advancements in modular LLM
orchestration and function-calling pipelines [3].

2.4.Evaluation Setup and Use Case Scenarios

To empirically evaluate the efficacy of the modular Semantic Kernel agent, we designed
a multi-stage assessment protocol involving synthetic benchmarks and real-world
codebases. The goal was to measure the agent’s ability to provide accurate, context-aware
code reviews and actionable refactoring suggestions across diverse programming
scenarios. The evaluation framework consisted of three complementary setups. First, a
curated dataset of 200 Python functions was compiled from open-source repositories,
covering a wide range of common software engineering concerns such as code smells,
complexity violations, and non-conforming naming conventions. These functions were
reviewed both by the Semantic Kernel agent and a panel of human reviewers with at least
three years of professional software development experience. The results were compared
based on the precision, relevance, and clarity of suggestions, with scoring metrics
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adapted from prior work on automated code feedback systems [11]. Second, a synthetic
suite of 50 coding prompts was designed to probe the robustness of plugin selection and
prompt routing under ambiguous user inputs (e.g., "Can you improve this?", "Is this code
clean?"). These prompts were injected into the system with varied code contexts and
measured for correctness of plugin invocation, retrieval hit accuracy, and LLM response
fidelity. The aim was to test the alignment between vector-based retrieval and functional
intent detection, particularly in multi-agent interaction scenarios. Third, a real-world case
study was conducted using a production-grade microservice written in Python and
TypeScript. The Semantic Kernel agent was tasked with generating iterative feedback on
specific modules—such as authentication handlers, data access layers, and configuration
scripts. The outputs were analyzed for (i) suggestion redundancy, (ii) hallucination rate,
and (iii) correctness of syntax-aware transformations. These use cases allowed us to
evaluate how well the agent maintained reasoning consistency and modularity over
extended review chains. To quantify user-perceived usefulness, a post-evaluation survey
was conducted among 12 developers who used the agent in a simulated code review
sprint. Feedback indicated that the system improved the clarity and structure of
refactoring recommendations, while reducing the overhead of manually locating relevant
linters or static analysis tools. However, the evaluation also revealed limitations in
handling multi-language codebases and deeply nested asynchronous workflows,
pointing to directions for future refinement.

The integration of RAG-based retrieval, chain-of-thought prompting, and modular
plugin composition demonstrated significant advantages in task-specific adaptability
and low-latency code navigation. These findings position the Semantic Kernel agent as a
promising architecture for Al-assisted code analysis, aligning with recent developments
in tool-augmented LLM systems [7][8].

3. Results

The empirical evaluation of the Semantic Kernel-based agent yielded promising
outcomes across both quantitative and qualitative dimensions. The results indicate that
the modular and plugin-enhanced architecture not only facilitates accurate prompt
routing but also generates actionable code feedback aligned with developer expectations.

The architectural team further shared operational metrics that capture the agent’s real-
world influence on development workflows. Out of 836 Al-generated code review
suggestions, developers adopted and resolved 186 items, corresponding to a 22%
implementation rate. This level of uptake highlights a measurable first-wave benefit of
integrating Al into the review pipeline, showing that nearly one quarter of the agent’s
recommendations were deemed valuable enough to directly influence production code.
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The synthetic prompt suite validated the agent’s capacity to route vague or
underspecified requests to the appropriate plugins. Of the 50 ambiguous prompts tested,
the orchestrator correctly identified the user’s intent and routed the query to the right
function in 92% of cases. This outcome underscores the robustness of the underlying
vector search mechanism and the benefit of slot-specific agent design.

The real-world case study on a microservice codebase further confirmed the utility of the
agent in practical settings. Across 12 different modules reviewed, the system produced
86 unique suggestions, of which 77% were deemed actionable by senior engineers during
post-hoc analysis. Furthermore, the hallucination rate, defined as syntactically incorrect
or semantically irrelevant suggestions; remained below 5.4%, outperforming baseline
LLM agents without retrieval or plugin integration by a significant margin [7].
Subjective feedback from the developer cohort involved in the final phase of testing
highlighted several perceived benefits of the system. Participants noted a reduction in
cognitive load when reviewing legacy code and praised the agent’s ability to surface style
violations that static analyzers typically overlook. However, feedback also pointed to
areas for improvement, including support for more programming languages, integration
with CI/CD pipelines, and the inclusion of memory modules for persistent feedback
tracking.

Overall, the results support the hypothesis that combining Retrieval-Augmented
Generation (RAG) with plugin-enabled function calls within a modular agentic
framework offers tangible benefits for code analysis tasks. The design choices adopted in
this study, particularly intent slotting, semantic reranking, and function-bound
execution, contributed significantly to performance improvements, consistent with
recent findings in tool-augmented Al systems [8][9]

4. Discussion and Conclusion

This study demonstrates the practical advantages of leveraging a modular, plugin-based
semantic agent framework rooted in the Semantic Kernel for conducting automated code
review and refactoring feedback generation. The integration of Retrieval-Augmented
Generation (RAG), function-calling capabilities, and slot-specific agent dispatch enabled
a robust orchestration mechanism that outperforms monolithic LLM-based code
reviewers both in accuracy and developer alignment.

The empirical findings affirm that such hybrid architectures mitigate the limitations of
end-to-end generative systems by anchoring responses in validated documentation, style
guides, and coding standards. The precision and recall metrics observed across
benchmark datasets reveal that the agent consistently produces relevant suggestions,
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especially in areas such as complexity reduction, naming clarity, and test coverage
enhancement. These results validate prior claims regarding the efficacy of plugin-
augmented Al systems in code-related reasoning tasks [8][9].

Furthermore, the real-world use case on a distributed microservice architecture
uncovered several additional benefits. Developers reported improved explainability and
interpretability of feedback, suggesting that modular agent-based outputs —when paired
with transparent prompt chaining—can foster greater trust in Al-assisted tooling. This
aligns with the growing body of literature emphasizing human-AlI co-piloting over fully
autonomous decision-making in software engineering contexts [10].

In parallel with these qualitative insights, the system’s pilot deployment provided an
additional perspective on its practical value in production environments. During internal
evaluation, the agent generated 836 code review suggestions, of which developers
adopted and resolved 186 —corresponding to a 22% implementation rate. Although not
a direct measure of algorithmic accuracy, this adoption ratio serves as an early real-world
indicator of developer trust and perceived usefulness. The pattern of accepted
recommendations also reinforces the controlled-study findings, with a disproportionate
number of adopted items relating to readability improvements, modularization
suggestions, and surface-level complexity reductions. This convergence between
quantitative benchmarks and real-world adoption highlights the agent’s capacity to
complement developer workflows rather than merely automate them.

Nevertheless, the study is not without limitations. The agent's performance is contingent
upon well-structured plugin APIs and high-quality retrieval data. In poorly documented
or non-English codebases, the effectiveness of semantic reranking and prompt routing
may degrade. Additionally, the lack of persistent memory and contextual learning across
sessions restricts longitudinal codebase understanding—an area identified for future
enhancement.

Future work will explore extending the agent with memory modules, potentially
powered by vector stores such as ChromaDB or Milvus, to retain refactoring histories,
support long-term code evolution tracking, and enable personalized feedback loops.
Another promising direction involves multimodal integration, allowing the agent to
interpret UML diagrams, flowcharts, or architecture maps alongside textual code inputs,
thus broadening the spectrum of viable refactoring insights. Expanding support to
multilingual codebases and heterogeneous development stacks also remains an open
research direction.

In conclusion, this work contributes to the emerging literature on agentic Al for software
development by presenting a production-grade, modular Semantic Kernel-based
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framework that offers scalable, extensible, and interpretable code review capabilities. By
aligning the system’s architecture with contemporary Al design principles —modularity,
retrieval grounding, prompt transparency, and function-specific control—this study
charts a viable pathway toward more intelligent, collaborative, and trustworthy

development tooling for modern engineering teams.
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