
 https://doi.org/10.56038/oprd.v7i1.739  
 

Online ISSN: 2980-020X https://journals.orclever.com/oprd 43 

 

Conference Article 

A Modular Semantic Kernel Agent for Automated Code 

Review and Refactoring Feedback 

Semih Yazıcı1*, Seza Dursun2, Bahar Önel3, Tülin Işıkkent 4 , Sedat Çelik5, Erem Karalar6, Mert Alacan7,  

1Boyner, Orcid ID: https://orcid.org/ 0009-0006-4503-0256   

e-mail:semih.yazici@boyner.com.tr  Tel: 0554 693 8626 
2 Boyner, Orcid ID: https://orcid.org/0000-0003-1389-072X   

e-mail: seza.dursun@boyner.com.tr  Tel: 0533 614 59 23 
3 Boyner, Orcid ID: https://orcid.org/0009-0007-4597-6591, e-mail:bahar.onel@boyner.com.tr 

4 Boyner, Orcid ID:  https://orcid.org/0009-0005-5775-0093 , e-mail:tulin.isikkent@boyner.com.tr 
5 Boyner, Orcid ID: https://orcid.org/0009-0003-0335-6440  sedat.celik@boyner.com.tr  Tel: 0553 824 00 47 

6 Boyner, Orcid ID:  https://orcid.org/0000-0001-6289-9275 e-mail:erem.karalar@boyner.com.tr 
7 Boyner, Orcid ID: https://orcid.org/0000-0003-3893-6309 e-mail:mert.alacan@boyner.com.tr 

* 

 

Received: 25 June 2025 

Revised: 21 September 2025 

2nd Revised: 12 October 2025 

Accepted: 26 October 2025 

Published: 31 December 2025 

 

This is an open access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license. 

 

Reference: Yazıcı, S., Dursun, S., Önel, B., Işıkkent, T., Çelik, S., Karalar, E., & Alacan, M. (2025). A modular 

semantic kernel agent for automated code review and refactoring feedback. Orclever Proceedings of 

Research and Development, 7(1), 43–54. 

Abstract 

In modern software development, maintaining clean, efficient, and reliable code is critical to team 

productivity and product quality. This paper introduces a modular Large Language Model (LLM)-

based agent, designed using Microsoft’s Semantic Kernel framework, for automated code review 

and refactoring feedback. The agent leverages plugin-based function orchestration, Retrieval-

Augmented Generation (RAG), and dynamic prompt engineering to analyze source code across 

multiple dimensions; including readability, efficiency, security, and adherence to best practices. 

Integrated into CI/CD pipelines and broader SDLC workflows, the system provides contextual 

insights, the system provides contextual insights, suggests specific improvements, and explains 

reasoning for each recommendation. Evaluation results across real-world open-source repositories 
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demonstrate the agent’s effectiveness in reducing human review time while improving refactor 

quality. The modular design ensures adaptability to various programming languages and 

enterprise development environments. This research highlights the potential of agentic LLM 

systems to augment software engineering workflows with intelligent, transparent, and developer-

aligned feedback mechanisms. 

Keywords:   Code Review, Semantic Kernel, Plugin Orchestration, Refactoring, Large 

Language Models, Agentic AI, Retrieval-Augmented Generation, Prompt Engineering  
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1. Introduction 

Code review remains a cornerstone of modern software development, ensuring quality, 

maintainability, and collaboration across development teams. Yet, manual reviews are 

often time-consuming, error-prone, and limited by the expertise of individual reviewers. 

In parallel, the growing complexity of codebases and continuous integration demands 

have increased the need for scalable, consistent, and context-aware feedback 

mechanisms. 

Recent advances in Large Language Models (LLMs) have introduced new possibilities in 

automated code analysis, enabling models to reason about code structure, suggest 

improvements, and even perform refactoring tasks. However, these capabilities often 

remain locked within monolithic applications or static pipelines that lack modularity, 

domain adaptability, and real-time integration with developer workflows. 

To address these limitations, we propose a modular, Semantic Kernel-based agentic 

architecture for intelligent code review and refactoring guidance. The system leverages 

Microsoft’s Semantic Kernel framework to orchestrate plugin functions dynamically, 

enabling the agent to interact with code, documentation, and retrieval systems in a 

coherent, multi-turn fashion. With built-in support for Retrieval-Augmented Generation 

(RAG), prompt engineering, and plugin chaining, the agent provides real-time, 

explainable feedback on code quality, security, and best practices. 

In this study, we demonstrate how the proposed agent is designed to be adaptable across 

programming languages, easily integrated into CI/CD pipelines and automated review 

stages within the SDLC, and extensible with custom plugins. We present its architecture, 

function orchestration logic, and real-world evaluation on open-source projects. This 

work aims to bridge the gap between static linters and dynamic human-like reviewers, 

contributing to the broader vision of intelligent software engineering assistance through 

agentic AI systems. 

2. Materials and Methods 

This section outlines the technical foundation and implementation methodology of the 

proposed Semantic Kernel-based modular code review agent. Our approach integrates 

various components from the Microsoft Semantic Kernel ecosystem, custom plugin 

functions, retrieval-augmented prompting, and structured evaluation scenarios to ensure 

robust, explainable, and context-aware code analysis. 

We divide the system architecture into four major pillars: (1) the modular integration of 

Semantic Kernel within an agentic framework, (2) the design of reusable plugin functions 
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tailored for code understanding and refactoring, (3) the orchestration of prompt 

engineering techniques and retrieval pipelines, and (4) the evaluation setup through 

simulated and real-world code review scenarios. Each component is detailed in the 

subsections below to illustrate how the system achieves dynamic interaction, scalability, 

and developer-aligned feedback mechanisms 

2.1.System Architecture and Semantic Kernel Integration 

The proposed agent system is developed on top of Microsoft’s Semantic Kernel (SK), 

offering a modular and extensible architecture tailored for automated code review and 

refactoring feedback. Designed to operate as both a standalone tool and a component 

within multi-agent ecosystems, the system enables seamless integrated into enterprise-

scale CI/CD workflows and automated quality gates. 

At the heart of the architecture lies the SK Planner, which leverages large language 

models to dynamically compose execution plans based on user intent. Rather than relying 

on pre-defined prompt chains, the planner interprets natural language queries and 

autonomously orchestrates relevant semantic functions and plugins. This mechanism 

provides zero-shot task planning capabilities across a broad spectrum of review 

functions. The system follows a two-stage operational pipeline. In the first stage, the user 

input is analyzed to identify intent and contextual needs, leading the planner to construct 

a reasoning path by selecting appropriate plugin functions, such as code parsing, pattern 

extraction, or style evaluation. In the second stage, these functions are executed in a 

sequential or parallel manner depending on the complexity and scope of the request. The 

outputs are then interpreted, refined, and returned to the user, with the ability to trigger 

further analysis based on semantic uncertainty. This architectural design supports 

modular parallelism, allowing for concurrent evaluation of independent code aspects 

such as naming conventions, formatting consistency, cyclomatic complexity, or 

documentation quality. Additionally, it enables stateful multi-turn interactions, where 

the agent retains contextual memory to support iterative review and refactoring cycles 

across session history. 

The architecture also supports retrieval-augmented capabilities, where the agent can 

access codebase embeddings, previous code reviews, or best-practice repositories to 

ground its recommendations. By combining neural planning, symbolic reasoning, and 

plugin-based function invocation, the system delivers scalable and intelligent automation 

for code analysis. [Figure 1] 
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Figure 1: System Architecture 

 

2.2.Plugin and Function Design 

The agent’s functionality is powered by a set of carefully engineered Semantic Kernel 

plugins, each comprising modular functions tailored to discrete code review tasks. These 

plugins are implemented as lightweight, stateless wrappers around Python scripts, 

enabling seamless orchestration by the SK Planner and facilitating rapid extensibility. 
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Each function is defined with a standardized schema specifying input parameters, output 

expectations, and a natural language description of its role. This enables large language 

models to reason about available capabilities and assemble them dynamically into task-

specific execution chains without requiring manual prompt design. For instance, the 

'review changes' feature allows the CI/CD system to review code changes that have been 

pushed to the repository, while 'analyse' examines the semantic meaning of the code to 

understand its purpose and functionality. To support both lexical and semantic-level 

analysis, the system integrates plugins that operate at multiple abstraction layers. Syntax-

level functions utilize abstract syntax tree (AST) parsing and static code analysis, whereas 

semantic functions incorporate LLM-based reasoning to evaluate code quality, 

readability, or architectural coherence. This hybrid design allows the agent to produce 

both deterministic insights and creative refactoring suggestions. Function 

interoperability is a critical design goal. Many plugins are designed to be composable—

where the output of one function, such as dependency resolution, feeds directly into 

another that performs complexity estimation. This composability enables the planner to 

construct multi-step workflows such as: (1) extract code structure, (2) identify high-

complexity areas, and (3) recommend specific re-factorings. Furthermore, plugins are 

grouped under namespaces that correspond to domain-specific roles. For example, the 

“CodeReviewer” namespace includes functions for naming conventions, docstring 

evaluation, and test coverage estimation, while the Re-factoringAdvisor namespace 

focuses on suggesting best practices, code modularization, and legacy code upgrades. 

This structure facilitates controlled exposure of capabilities depending on user profile 

and use case. 

All plugins are evaluated against a test suite comprising real-world code samples drawn 

from open-source repositories. Functions are assessed for precision, relevance, and 

execution latency to ensure their applicability in production scenarios. This rigorous 

evaluation supports the agent’s reliability and scalability, making it suitable for both real-

time developer assistance and offline batch review workflows. 

2.3.Prompt Engineering and RAG Pipeline 

To enable contextual and modular reasoning across varied code review tasks, the agent 

leverages a dynamic prompt engineering strategy aligned with the Retrieval-Augmented 

Generation (RAG) framework. The underlying objective is to ground large language 

model (LLM) responses in domain-specific knowledge while maintaining generalization 

capabilities across diverse codebases [1]. 

Each plugin function within the Semantic Kernel agent is registered with a detailed 

natural language description, input-output schema, and execution intent. These 

descriptions are indexed into a vector database using the text-embedding-3-small model, 

selected for its low latency and high semantic fidelity in short-form instruction encoding 
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[2]. When the agent receives a user query or task description (e.g., "refactor this function 

to improve readability"), a vector search retrieves the top-k relevant plugin functions 

from the semantic memory. This mechanism constitutes the first phase of the RAG 

pipeline—retrieval. To enhance recall precision, the system also appends code context 

(e.g., parsed AST nodes or symbol tables) as supporting documents during the 

embedding process. The retrieved content is formatted into structured prompts through 

a templating engine that conditionally includes tool signatures, user instructions, and 

historical memory snippets. This dynamic prompt construction enables multi-turn 

conversation continuity and context retention without persistent session storage. The 

generation phase is handled by OpenAI's gpt-4o model, selected for its superior 

instruction-following behavior and reduced prompt latency in comparison to earlier 

GPT-4 variants [3]. The prompt includes the selected plugin’s description, code snippet, 

and any prior reasoning steps to support chain-of-thought responses. For instance, when 

performing multi-agent reasoning: e.g., identifying a complexity issue and then 

suggesting a refactor: the output of the first agent is embedded into the prompt for the 

next, ensuring coherent progression across tasks. To mitigate hallucination risks and 

control temperature-sensitive outputs, prompt engineering guidelines enforce 

temperature limits (e.g., 0.2–0.4 for factual assessments) and discourage unsupported 

recommendations through disclaimer cues. Additionally, function-specific "prompt 

rules" such as “Only respond using the function's scope” or “Use PEP8 guidelines unless 

otherwise specified” are automatically inserted into the completion payload. This 

orchestration results in a hybrid reasoning loop: LLM-based understanding is 

continuously augmented with semantically aligned plugin capabilities, enabling both 

natural language explanation and executable code transformation. Such a RAG-

augmented agentic approach aligns with recent advancements in modular LLM 

orchestration and function-calling pipelines [3]. 

2.4.Evaluation Setup and Use Case Scenarios 

To empirically evaluate the efficacy of the modular Semantic Kernel agent, we designed 

a multi-stage assessment protocol involving synthetic benchmarks and real-world 

codebases. The goal was to measure the agent’s ability to provide accurate, context-aware 

code reviews and actionable refactoring suggestions across diverse programming 

scenarios. The evaluation framework consisted of three complementary setups. First, a 

curated dataset of 200 Python functions was compiled from open-source repositories, 

covering a wide range of common software engineering concerns such as code smells, 

complexity violations, and non-conforming naming conventions. These functions were 

reviewed both by the Semantic Kernel agent and a panel of human reviewers with at least 

three years of professional software development experience. The results were compared 

based on the precision, relevance, and clarity of suggestions, with scoring metrics 
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adapted from prior work on automated code feedback systems [11]. Second, a synthetic 

suite of 50 coding prompts was designed to probe the robustness of plugin selection and 

prompt routing under ambiguous user inputs (e.g., "Can you improve this?", "Is this code 

clean?"). These prompts were injected into the system with varied code contexts and 

measured for correctness of plugin invocation, retrieval hit accuracy, and LLM response 

fidelity. The aim was to test the alignment between vector-based retrieval and functional 

intent detection, particularly in multi-agent interaction scenarios. Third, a real-world case 

study was conducted using a production-grade microservice written in Python and 

TypeScript. The Semantic Kernel agent was tasked with generating iterative feedback on 

specific modules—such as authentication handlers, data access layers, and configuration 

scripts. The outputs were analyzed for (i) suggestion redundancy, (ii) hallucination rate, 

and (iii) correctness of syntax-aware transformations. These use cases allowed us to 

evaluate how well the agent maintained reasoning consistency and modularity over 

extended review chains. To quantify user-perceived usefulness, a post-evaluation survey 

was conducted among 12 developers who used the agent in a simulated code review 

sprint. Feedback indicated that the system improved the clarity and structure of 

refactoring recommendations, while reducing the overhead of manually locating relevant 

linters or static analysis tools. However, the evaluation also revealed limitations in 

handling multi-language codebases and deeply nested asynchronous workflows, 

pointing to directions for future refinement. 

The integration of RAG-based retrieval, chain-of-thought prompting, and modular 

plugin composition demonstrated significant advantages in task-specific adaptability 

and low-latency code navigation. These findings position the Semantic Kernel agent as a 

promising architecture for AI-assisted code analysis, aligning with recent developments 

in tool-augmented LLM systems [7][8]. 

3. Results 

The empirical evaluation of the Semantic Kernel-based agent yielded promising 

outcomes across both quantitative and qualitative dimensions. The results indicate that 

the modular and plugin-enhanced architecture not only facilitates accurate prompt 

routing but also generates actionable code feedback aligned with developer expectations. 

 

The architectural team further shared operational metrics that capture the agent’s real-

world influence on development workflows. Out of 836 AI-generated code review 

suggestions, developers adopted and resolved 186 items, corresponding to a 22% 

implementation rate. This level of uptake highlights a measurable first-wave benefit of 

integrating AI into the review pipeline, showing that nearly one quarter of the agent’s 

recommendations were deemed valuable enough to directly influence production code. 
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The synthetic prompt suite validated the agent’s capacity to route vague or 

underspecified requests to the appropriate plugins. Of the 50 ambiguous prompts tested, 

the orchestrator correctly identified the user’s intent and routed the query to the right 

function in 92% of cases. This outcome underscores the robustness of the underlying 

vector search mechanism and the benefit of slot-specific agent design. 

The real-world case study on a microservice codebase further confirmed the utility of the 

agent in practical settings. Across 12 different modules reviewed, the system produced 

86 unique suggestions, of which 77% were deemed actionable by senior engineers during 

post-hoc analysis. Furthermore, the hallucination rate, defined as syntactically incorrect 

or semantically irrelevant suggestions; remained below 5.4%, outperforming baseline 

LLM agents without retrieval or plugin integration by a significant margin [7]. 

Subjective feedback from the developer cohort involved in the final phase of testing 

highlighted several perceived benefits of the system. Participants noted a reduction in 

cognitive load when reviewing legacy code and praised the agent’s ability to surface style 

violations that static analyzers typically overlook. However, feedback also pointed to 

areas for improvement, including support for more programming languages, integration 

with CI/CD pipelines, and the inclusion of memory modules for persistent feedback 

tracking. 

Overall, the results support the hypothesis that combining Retrieval-Augmented 

Generation (RAG) with plugin-enabled function calls within a modular agentic 

framework offers tangible benefits for code analysis tasks. The design choices adopted in 

this study, particularly intent slotting, semantic reranking, and function-bound 

execution, contributed significantly to performance improvements, consistent with 

recent findings in tool-augmented AI systems [8][9] 

4. Discussion and Conclusion 

This study demonstrates the practical advantages of leveraging a modular, plugin-based 

semantic agent framework rooted in the Semantic Kernel for conducting automated code 

review and refactoring feedback generation. The integration of Retrieval-Augmented 

Generation (RAG), function-calling capabilities, and slot-specific agent dispatch enabled 

a robust orchestration mechanism that outperforms monolithic LLM-based code 

reviewers both in accuracy and developer alignment. 

The empirical findings affirm that such hybrid architectures mitigate the limitations of 

end-to-end generative systems by anchoring responses in validated documentation, style 

guides, and coding standards. The precision and recall metrics observed across 

benchmark datasets reveal that the agent consistently produces relevant suggestions, 
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especially in areas such as complexity reduction, naming clarity, and test coverage 

enhancement. These results validate prior claims regarding the efficacy of plugin-

augmented AI systems in code-related reasoning tasks [8][9]. 

Furthermore, the real-world use case on a distributed microservice architecture 

uncovered several additional benefits. Developers reported improved explainability and 

interpretability of feedback, suggesting that modular agent-based outputs—when paired 

with transparent prompt chaining—can foster greater trust in AI-assisted tooling. This 

aligns with the growing body of literature emphasizing human-AI co-piloting over fully 

autonomous decision-making in software engineering contexts [10]. 

In parallel with these qualitative insights, the system’s pilot deployment provided an 

additional perspective on its practical value in production environments. During internal 

evaluation, the agent generated 836 code review suggestions, of which developers 

adopted and resolved 186—corresponding to a 22% implementation rate. Although not 

a direct measure of algorithmic accuracy, this adoption ratio serves as an early real-world 

indicator of developer trust and perceived usefulness. The pattern of accepted 

recommendations also reinforces the controlled-study findings, with a disproportionate 

number of adopted items relating to readability improvements, modularization 

suggestions, and surface-level complexity reductions. This convergence between 

quantitative benchmarks and real-world adoption highlights the agent’s capacity to 

complement developer workflows rather than merely automate them. 

Nevertheless, the study is not without limitations. The agent's performance is contingent 

upon well-structured plugin APIs and high-quality retrieval data. In poorly documented 

or non-English codebases, the effectiveness of semantic reranking and prompt routing 

may degrade. Additionally, the lack of persistent memory and contextual learning across 

sessions restricts longitudinal codebase understanding—an area identified for future 

enhancement. 

Future work will explore extending the agent with memory modules, potentially 

powered by vector stores such as ChromaDB or Milvus, to retain refactoring histories, 

support long-term code evolution tracking, and enable personalized feedback loops. 

Another promising direction involves multimodal integration, allowing the agent to 

interpret UML diagrams, flowcharts, or architecture maps alongside textual code inputs, 

thus broadening the spectrum of viable refactoring insights. Expanding support to 

multilingual codebases and heterogeneous development stacks also remains an open 

research direction. 

In conclusion, this work contributes to the emerging literature on agentic AI for software 

development by presenting a production-grade, modular Semantic Kernel-based 
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framework that offers scalable, extensible, and interpretable code review capabilities. By 

aligning the system’s architecture with contemporary AI design principles—modularity, 

retrieval grounding, prompt transparency, and function-specific control—this study 

charts a viable pathway toward more intelligent, collaborative, and trustworthy 

development tooling for modern engineering teams. 
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