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Abstract

This paper presents the development of a multi-step, multi-disciplinary automation framework
designed to enhance quality assurance and process control in slasher indigo dyeing machines. The
system integrates two complementary subsystems: (1) a real-time yarn defect detection module
employing deep learning-based computer vision, and (2) a process optimization module utilizing
chromaticity analysis for colour stability and chemical balance control. The defect detection system
uses four moving cameras strategically placed across the machine to identify broken yarns and
irregular density patterns with high accuracy. The colour monitoring subsystem, developed in
collaboration with Agteks, continuously records yarn colour in the CIELAB colour space and
recommends corrective pH or reduction agent (Hydro) adjustments when deviations occur.
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Experimental results demonstrate a detection accuracy of 92.4%, with significant improvements
in production speed, consistency, and operator workload reduction. The proposed system
represents a comprehensive step toward fully autonomous dyeing operations aligned with
Industry 4.0 objectives.

Keywords: Slasher Indigo, Industry 4.0, Textile Automation, Machine Learning, Deep

Learning, Computer Vision
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1. Introduction

Automation in textile manufacturing has evolved beyond mechanical process control into
data-driven, intelligent systems that integrate sensing, computation, and decision-
making. The slasher indigo dyeing process—a critical step in denim production—has
traditionally relied on manual inspection and empirical operator adjustments. This
introduces variability, reduces throughput, and limits reproducibility. In response to
these challenges, this study presents an integrated automation framework for slasher
dyeing machines that addresses two primary challenges: real-time defect detection in
warp yarns and automated control of dyeing bath chemistry based on live colour
teedback. The system combines computer vision, machine learning, and empirical
process modelling to transform manual quality monitoring into a self-optimizing digital
workflow. The result is a robust, efficient, and operator-friendly approach that supports
consistent quality and productivity in industrial dyeing applications.

2. Related Works

The increasing integration of automation, sensing, and artificial intelligence within textile
production processes has driven substantial research in both academic and industrial
contexts. In the domain of optical colour measurement, Solli et al. [1] proposed spectral
estimation methods for colour measurement using consumer-grade digital cameras,
while Zhang et al. [2] employed hyperspectral imaging for high-precision colour
characterization in printed fabrics. These early contributions established a foundation for
quantitative colour monitoring using optical sensors, a concept later extended to process
control and material consistency evaluation.

Research on denim defect detection has followed a similar trajectory, evolving from
classical image processing methods toward modern deep learning-based approaches.
Wang et al. [3] demonstrated the use of Gabor filters to detect weave irregularities and
defects in denim fabrics, achieving improved robustness against illumination changes.
Celik et al. [4] proposed a real-time inspection system using image analysis to identify
common denim defects such as holes, missing warp or weft yarns, stains, and thread flow
anomalies. Their work highlighted the industrial relevance of computer vision for
continuous production monitoring.
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More recently, deep learning-based methods have achieved substantial gains in defect
recognition accuracy and adaptability. Talu et al. [5] designed a convolutional neural
network (CNN) architecture for loom-fabric inspection, reporting accuracy rates as high
as 96.5%. Gu et al. [6] developed an unsupervised segmentation algorithm based on local
patch prediction and residual fusion, which enabled defect identification without
extensive labelled datasets—a major step toward scalable implementation in data-scarce
environments. Similarly, Xu et al. proposed a knowledge-augmented deblurring
approach using deep learning to enhance in-situ image quality during yarn inspection,
demonstrating the potential for integrated defect correction within the imaging pipeline.
These advancements underscore the growing maturity of vision-based textile quality

inspection systems.

Despite this growing body of work, the integration of computer vision with active
chemical process control in slasher dyeing remains relatively unexplored. Existing
solutions typically address visual inspection or mechanical automation in isolation. The
system presented in this paper fills this research gap by coupling defect detection and
colour-driven chemical regulation within a unified cyber-physical architecture. This
approach represents a practical realization of Industry 4.0 principles, transforming
optical measurements and deep learning insights into direct, actionable process
interventions for improved quality consistency and operational efficiency.

3. Materials and Methods

The automation framework developed for the slasher indigo dyeing machine consists of
two tightly integrated subsystems operating under a unified control architecture. The
first subsystem is a yarn defect detection module that employs multiple industrial
cameras and deep learning algorithms to identify broken yarns and density irregularities
in real time. The second subsystem is a colour monitoring and process control module
designed to maintain dyeing stability by continuously analysing the CIELAB
chromaticity parameters of the yarn surface. Both subsystems are coordinated by a
centralized PLC-based automation infrastructure, ensuring seamless communication,
deterministic control, and high-speed data handling.

The integration of hardware and software components was designed to achieve robust
real-time performance, allowing visual feedback and chemical adjustment mechanisms
to operate synchronously with the continuous motion of the slasher dyeing line. The
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overall system thus combines intelligent image processing, data-driven decision-making,
and traditional process control into a hybrid cyber-physical platform.

3.1. Automation Infrastructure

For the automation backbone, a Siemens SIMATIC S7-1515-2 PN programmable logic
controller (PLC) was selected. This choice was guided by the need for high processing
capacity, sufficient onboard memory, and flexible communication capabilities compatible
with modern industrial protocols. The selected CPU includes 6,000 processing elements,
32 GB of load memory, and 3 MB of working memory, providing ample capacity for both
control logic and data exchange with external vision systems.

The SIMATIC S7-1500 architecture offers scalability in terms of power, memory, and
modular expansion while supporting OPC UA and PROFINET communication. These
features ensure interoperability with higher-level systems and readiness for future
Industry 4.0 applications. All I/O operations, drive communications, and process control
routines are handled through the PLC. Communication between the drives and the
operator interface occurs via PROFINET, ensuring deterministic data exchange.

Figure 1 - Siemens 57-1500 PLC

The PLC software utilizes multiple Siemens programming languages —Ladder Diagrams
(LAD), Statement List (STL), and Structured Control Language (SCL)—each chosen
according to the logic structure and operational requirements of individual control tasks.
This hybrid programming approach enhances flexibility, allowing intuitive handling of
sequential control processes, mathematical operations, and high-level function blocks

Online ISSN: 2980-020X https://journals.orclever.com/oprd

79



Orclever Proceedings of

Research and Development CLEVER

https://doi.org/10.56038/oprd.v7i1.694 Science & Research Group

within a single architecture. As a result, the automation system provides a stable
foundation for integrating computer vision modules and executing real-time corrective
actions based on vision-derived feedback.

3.2.  Yarn Defect Detection System

The defect detection subsystem is based on an array of Daheng MER2-160-227U3C colour
USB 3.0 Vision cameras equipped with Sony IMX273 global shutter CMOS sensors [7].
These cameras offer a resolution of 1440x1080 pixels and operate at frame rates up to 227
frames per second (fps). The 1/2.9-inch IMX273 sensor provides a 3.45 um pixel size, with
an 8-bit or 10-bit pixel depth, and supports Bayer RG8 and Bayer RG10 formats. The
cameras achieve a signal-to-noise ratio (SNR) of 41 dB and support an adjustable
exposure range from 1 us to 1 s, with gain control between 0-24 dB.

DAHENG
IM \GING

Figure 2 - Daheng MER2-160-227U3C Camera

The use of global shutter sensors minimizes motion artifacts, which is critical for high-
speed yarn inspection. Each of the four cameras is mounted at a specific machine
section—two in the wet zone and two in the dry zone—covering different optical
perspectives. This configuration allows comprehensive monitoring of yarn tension,
density, and structural continuity. The camera data are transmitted via high-bandwidth
USB 3.0 connections to an industrial PC for on-device image preprocessing before being
sent to the central control system.

3.2.1. Deep Learning Architecture

Although classical machine learning algorithms such as k-Nearest Neighbour (k-
NN) and Support Vector Machine (SVM) have demonstrated high accuracy in categorical
classification tasks [8], they typically require a separate feature extraction stage when
applied to image data. Therefore, convolutional neural networks (CNNs) were adopted
in this study for their end-to-end feature learning and robust performance in computer
vision tasks.
CNNs are a class of deep learning models specifically designed to process and analyse
visual data. They automatically learn spatial hierarchies of features from raw pixel inputs,
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eliminating the need for manual feature extraction required in traditional machine
learning approaches.
The fundamental operation in a CNN is the two-dimensional convolution, expressed as:

M N
K k
yi(,j) =f (Z Z Xi+m,j+n Wr(nzl + b(k))

m=1n=1
where x represents the input feature map, w® and b denote the kernel and bias of the
k-th filter, respectively, and f(-) is a nonlinear activation function such as ReLU. This
operation enables the network to learn local spatial patterns, which are combined across
layers to form higher-level abstractions of the input image.

In this study, the ResNet50 architecture was adopted and fine-tuned through transfer
learning to leverage pre-trained large-scale visual representations for textile applications.
ResNet50 introduces residual connections that facilitate gradient propagation through
deep layers, effectively mitigating the vanishing gradient problem and improving model
convergence. Transfer learning significantly reduced training time and enhanced
generalization by adapting the model’s high-level features to the characteristics of the
textile dataset.

The trained model was deployed on an embedded inference engine within the industrial
PC, enabling real-time analysis of continuous image streams. When a defect is detected,
the system immediately issues a visual alarm message via the HMI, allowing operators
to intervene without disrupting production. The multi-camera setup, coupled with
robust preprocessing and lighting calibration, ensures stability under varying
illumination and motion conditions.

3.2.2. Design Evolution and Mechanical Modifications

During prototype development, several iterative design changes were
implemented to address limitations identified during early field trials. The four Daheng
cameras were originally installed in fixed positions; however, stationary imaging proved
insufficient for reliably resolving individual yarns within the yarn band, even at high
resolution. To overcome this, each camera was mounted on a linear motion axis, enabling
controlled movement across the yarn band width to enhance inspection coverage and
detail accuracy.
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Environmental exposure within the dyeing line necessitated further refinements. The
cameras were first enclosed in transparent, tunnel-shaped plexiglass housings to prevent
contamination from dust and moisture. External cleaning pads were mounted at both
ends of each housing to automatically clean the viewing window during camera motion.
While this solution effectively protected the optics, it introduced accessibility challenges
for maintenance and alighment adjustments.

;.: { i
Figure 3 - Placement of the camera in housing prototype-3

Consequently, the design evolved into a modular form, in which each camera was
enclosed in an individual plexiglass box that moved together with the camera along its
guide rail. The cleaning pads were repositioned to the endpoints of the motion path,
where the housing’s front surface was automatically cleaned when the camera reached
either limit.
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Figure 4 - Placement of the camera in housing Figure 5 - Placement of the camera in housing
prototype-4 prototype-5

This iterative refinement significantly improved the mechanical reliability,
maintainability, and image clarity of the vision subsystem. However, the dynamic motion
setup introduced cable wear issues, which were later mitigated through the embedded-
PC integration discussed in Section 4.

Figure 6 - Image of a non-defect yarn band Figure 7 - Image of a defect yarn band

3.3. Colour-Based Process Control System

The second subsystem is dedicated to colour stability and chemical control within the
dyeing process. The camera developed for this optical monitoring task employs a custom-
designed spectroscopic configuration optimized for near-infrared sensing. The optical
path begins with the incident light from the illuminated yarn surface, which is focused
through a 25 mm focal length objective lens and directed toward a 30 um-wide entrance
slit. The light is then linearized and dispersed to achieve a spectral resolution of
approximately 2.5 nm.
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Figure 8 - Agteks Colour Detection Camera System

The detector unit consists of a 320x256-pixel CMOS sensor, with each pixel measuring 30
pum x 30 um, and operates within a 900-1700 nm spectral range at a frame rate of 344 fps.
The system dimensions—310 mm length, 60 mm width, and 65 mm height —make it
compact enough for industrial integration near the dyeing bath. This camera system was
developed by Agteks and represents a significant innovation in colorimetric process
monitoring for textile applications, capable of detecting subtle chromatic variations
beyond the visible spectrum.

The camera continuously measures yarn colour and converts spectral data into CIELAB
chromaticity parameters (a and b), which correspond to the red—green and yellow-blue
colour axes, respectively. Through extensive laboratory calibration, the reference values
were determined as a =1.0203 and b = 0.4381. The real-time colour data are processed by
a dedicated software that compares the live readings to these references using a +0.20
tolerance range. When deviations occur, the system applies empirically established
control logic: increasing or decreasing pH and Hydro concentrations depending on
whether the yarn shifts toward red/green or yellow/blue.

To ensure robustness, median filtering is applied to the rolling data window to suppress
transient noise and outliers. Suggested corrections are limited to +20% per cycle to
prevent overcompensation. Each corrective event is logged and monitored by the PLC,
which updates process setpoints and transmits the recommendations to the operator via
the HMI. Operators retain full authority to accept, ignore, or automate these adjustments,
maintaining a balance between automatic precision and manual oversight.
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Figure 9 - Placement of the colour detection system

4, Results

Following integration of the software and hardware subsystems, the complete system
was deployed on an operational slasher dyeing line. Initial validation involved verifying
all electrical and communication links between the cameras, processing units, and PLC.
Functional testing confirmed that the image processing module correctly identified yarn
defects and that the colour analysis module generated control recommendations
consistent with laboratory measurements. During pilot production runs, the system
accurately detected and flagged yarn defects in real time, while generating reliable
chemical adjustment recommendations derived from live colour data. Operator feedback
indicated that the user interface was intuitive and that the automation features
significantly reduced manual monitoring requirements.

Certain technical challenges were also identified and resolved during field trials. Uneven
illumination conditions initially affected the consistency of defect detection. To mitigate
this issue, the LED lighting system was modified to include dimmable functionality,
allowing fine-tuned brightness control according to fabric colour and surface properties.
Cable wear issues observed during extended operation were resolved by integrating
embedded PCs directly into the camera housings, thereby shortening cable lengths and
eliminating signal loss. These corrective measures improved both the stability and
reliability of the system under industrial operating conditions.

Comprehensive testing demonstrated that the integrated system achieved substantial
improvements in both quality control and process efficiency. The defect detection
module, built on a fine-tuned ResNet-50 network pretrained on ImageNet, was
optimized through extensive trials. A batch size of 16 and 20 training epochs was found
optimal for stable convergence and generalization. Training was conducted in two stages:
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tirst, the pretrained layers were frozen and only the classification head (global average
pooling, dropout 0.3, and a sigmoid-activated dense layer) was trained using the Adam
optimizer with a learning rate of 1x107%; then, the last 50 layers were unfrozen for fine-
tuning with a reduced learning rate (1x107%), applying early stopping and model
checkpointing to prevent overfitting.

Under these conditions, the deep learning model achieved an average classification
accuracy of 92.4% and a recall rate of 86.9%, ensuring that most defective yarns were
correctly identified in real time. During extended operation, system uptime reached
approximately 93%, while manual inspection workloads were reduced by nearly 35%.
Furthermore, colour consistency across production batches improved significantly, with
only minor deviations observed in CIELAB colour parameters under dynamic
production conditions.

Table 1: Performance Metrics of the Deep Learning Model

Metric Value
Accuracy 92.4%
Precision 88.1%

Sensitivity 85.7%
F1-Score 86.9%
AUC 0.94

The synergy between data-driven defect detection and empirically derived chemical
control rules provided a robust and interpretable decision-making framework. This
integration bridged laboratory-level precision with practical shop-floor applicability,
enabling operators to rely on quantitative feedback while maintaining process flexibility.
The modular nature of the system also facilitates future scalability, allowing additional
sensors or machine learning models to be integrated as production requirements evolve.

5. Discussion and Conclusion

This study presents a fully integrated computer vision and process control system for
automating quality assurance in slasher indigo dyeing. By combining deep learning-
based defect detection with real-time chemical correction recommendations, the system
advances the textile dyeing process toward a self-regulating and intelligent production
paradigm. The proposed framework demonstrates that image-based monitoring and
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chromaticity-driven chemical control can coexist as part of a unified digital architecture,

reducing human intervention while maintaining reliability and precision.

Future research will focus on expanding the dataset to include rare defect types,
developing specialized sub-models for complex yarn anomalies, and implementing
predictive analytics for proactive process optimization. Further work will also explore
cloud-based remote monitoring and adaptive learning mechanisms to continuously
enhance system performance. Overall, the developed approach provides a foundation for
the digital transformation of traditional dyeing operations and offers a scalable model for
next-generation smart textile manufacturing systems.
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