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Abstract 

This paper presents the development of a multi-step, multi-disciplinary automation framework 

designed to enhance quality assurance and process control in slasher indigo dyeing machines. The 

system integrates two complementary subsystems: (1) a real-time yarn defect detection module 

employing deep learning-based computer vision, and (2) a process optimization module utilizing 

chromaticity analysis for colour stability and chemical balance control. The defect detection system 

uses four moving cameras strategically placed across the machine to identify broken yarns and 

irregular density patterns with high accuracy. The colour monitoring subsystem, developed in 

collaboration with Agteks, continuously records yarn colour in the CIELAB colour space and 

recommends corrective pH or reduction agent (Hydro) adjustments when deviations occur. 
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Experimental results demonstrate a detection accuracy of 92.4%, with significant improvements 

in production speed, consistency, and operator workload reduction. The proposed system 

represents a comprehensive step toward fully autonomous dyeing operations aligned with 

Industry 4.0 objectives. 

Keywords:   Slasher Indigo, Industry 4.0, Textile Automation, Machine Learning, Deep 

Learning, Computer Vision  
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1. Introduction 

Automation in textile manufacturing has evolved beyond mechanical process control into 

data-driven, intelligent systems that integrate sensing, computation, and decision-

making. The slasher indigo dyeing process—a critical step in denim production—has 

traditionally relied on manual inspection and empirical operator adjustments. This 

introduces variability, reduces throughput, and limits reproducibility. In response to 

these challenges, this study presents an integrated automation framework for slasher 

dyeing machines that addresses two primary challenges: real-time defect detection in 

warp yarns and automated control of dyeing bath chemistry based on live colour 

feedback. The system combines computer vision, machine learning, and empirical 

process modelling to transform manual quality monitoring into a self-optimizing digital 

workflow. The result is a robust, efficient, and operator-friendly approach that supports 

consistent quality and productivity in industrial dyeing applications. 

2. Related Works 

The increasing integration of automation, sensing, and artificial intelligence within textile 

production processes has driven substantial research in both academic and industrial 

contexts. In the domain of optical colour measurement, Solli et al. [1] proposed spectral 

estimation methods for colour measurement using consumer-grade digital cameras, 

while Zhang et al. [2] employed hyperspectral imaging for high-precision colour 

characterization in printed fabrics. These early contributions established a foundation for 

quantitative colour monitoring using optical sensors, a concept later extended to process 

control and material consistency evaluation. 

Research on denim defect detection has followed a similar trajectory, evolving from 

classical image processing methods toward modern deep learning-based approaches. 

Wang et al. [3] demonstrated the use of Gabor filters to detect weave irregularities and 

defects in denim fabrics, achieving improved robustness against illumination changes. 

Celik et al. [4] proposed a real-time inspection system using image analysis to identify 

common denim defects such as holes, missing warp or weft yarns, stains, and thread flow 

anomalies. Their work highlighted the industrial relevance of computer vision for 

continuous production monitoring. 
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More recently, deep learning-based methods have achieved substantial gains in defect 

recognition accuracy and adaptability. Talu et al. [5] designed a convolutional neural 

network (CNN) architecture for loom-fabric inspection, reporting accuracy rates as high 

as 96.5%. Gu et al. [6] developed an unsupervised segmentation algorithm based on local 

patch prediction and residual fusion, which enabled defect identification without 

extensive labelled datasets—a major step toward scalable implementation in data-scarce 

environments. Similarly, Xu et al. proposed a knowledge-augmented deblurring 

approach using deep learning to enhance in-situ image quality during yarn inspection, 

demonstrating the potential for integrated defect correction within the imaging pipeline. 

These advancements underscore the growing maturity of vision-based textile quality 

inspection systems. 

Despite this growing body of work, the integration of computer vision with active 

chemical process control in slasher dyeing remains relatively unexplored. Existing 

solutions typically address visual inspection or mechanical automation in isolation. The 

system presented in this paper fills this research gap by coupling defect detection and 

colour-driven chemical regulation within a unified cyber-physical architecture. This 

approach represents a practical realization of Industry 4.0 principles, transforming 

optical measurements and deep learning insights into direct, actionable process 

interventions for improved quality consistency and operational efficiency. 

3. Materials and Methods 

The automation framework developed for the slasher indigo dyeing machine consists of 

two tightly integrated subsystems operating under a unified control architecture. The 

first subsystem is a yarn defect detection module that employs multiple industrial 

cameras and deep learning algorithms to identify broken yarns and density irregularities 

in real time. The second subsystem is a colour monitoring and process control module 

designed to maintain dyeing stability by continuously analysing the CIELAB 

chromaticity parameters of the yarn surface. Both subsystems are coordinated by a 

centralized PLC-based automation infrastructure, ensuring seamless communication, 

deterministic control, and high-speed data handling. 

The integration of hardware and software components was designed to achieve robust 

real-time performance, allowing visual feedback and chemical adjustment mechanisms 

to operate synchronously with the continuous motion of the slasher dyeing line. The 
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overall system thus combines intelligent image processing, data-driven decision-making, 

and traditional process control into a hybrid cyber-physical platform. 

3.1. Automation Infrastructure 

For the automation backbone, a Siemens SIMATIC S7-1515-2 PN programmable logic 

controller (PLC) was selected. This choice was guided by the need for high processing 

capacity, sufficient onboard memory, and flexible communication capabilities compatible 

with modern industrial protocols. The selected CPU includes 6,000 processing elements, 

32 GB of load memory, and 3 MB of working memory, providing ample capacity for both 

control logic and data exchange with external vision systems. 

The SIMATIC S7-1500 architecture offers scalability in terms of power, memory, and 

modular expansion while supporting OPC UA and PROFINET communication. These 

features ensure interoperability with higher-level systems and readiness for future 

Industry 4.0 applications. All I/O operations, drive communications, and process control 

routines are handled through the PLC. Communication between the drives and the 

operator interface occurs via PROFINET, ensuring deterministic data exchange. 

 

Figure 1 - Siemens S7-1500 PLC 

The PLC software utilizes multiple Siemens programming languages—Ladder Diagrams 

(LAD), Statement List (STL), and Structured Control Language (SCL)—each chosen 

according to the logic structure and operational requirements of individual control tasks. 

This hybrid programming approach enhances flexibility, allowing intuitive handling of 

sequential control processes, mathematical operations, and high-level function blocks 
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within a single architecture. As a result, the automation system provides a stable 

foundation for integrating computer vision modules and executing real-time corrective 

actions based on vision-derived feedback. 

3.2. Yarn Defect Detection System 

The defect detection subsystem is based on an array of Daheng MER2-160-227U3C colour 

USB 3.0 Vision cameras equipped with Sony IMX273 global shutter CMOS sensors [7]. 

These cameras offer a resolution of 1440×1080 pixels and operate at frame rates up to 227 

frames per second (fps). The 1/2.9-inch IMX273 sensor provides a 3.45 μm pixel size, with 

an 8-bit or 10-bit pixel depth, and supports Bayer RG8 and Bayer RG10 formats. The 

cameras achieve a signal-to-noise ratio (SNR) of 41 dB and support an adjustable 

exposure range from 1 μs to 1 s, with gain control between 0–24 dB. 

 

 

Figure 2 - Daheng MER2-160-227U3C Camera 

The use of global shutter sensors minimizes motion artifacts, which is critical for high-

speed yarn inspection. Each of the four cameras is mounted at a specific machine 

section—two in the wet zone and two in the dry zone—covering different optical 

perspectives. This configuration allows comprehensive monitoring of yarn tension, 

density, and structural continuity. The camera data are transmitted via high-bandwidth 

USB 3.0 connections to an   industrial PC for on-device image preprocessing before being 

sent to the central control system. 

3.2.1. Deep Learning Architecture 

Although classical machine learning algorithms such as k-Nearest Neighbour (k-

NN) and Support Vector Machine (SVM) have demonstrated high accuracy in categorical 

classification tasks [8], they typically require a separate feature extraction stage when 

applied to image data. Therefore, convolutional neural networks (CNNs) were adopted 

in this study for their end-to-end feature learning and robust performance in computer 

vision tasks.  

CNNs are a class of deep learning models specifically designed to process and analyse 

visual data. They automatically learn spatial hierarchies of features from raw pixel inputs, 
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eliminating the need for manual feature extraction required in traditional machine 

learning approaches. 

The fundamental operation in a CNN is the two-dimensional convolution, expressed as: 

𝑦𝑖,𝑗
(𝑘)

= 𝑓 (∑ ∑𝑥𝑖+𝑚,𝑗+𝑛

𝑁

𝑛=1

𝑀

𝑚=1

⋅ 𝑤𝑚,𝑛
(𝑘) + 𝑏(𝑘)) 

where 𝑥 represents the input feature map, 𝑤(𝑘) and 𝑏(𝑘) denote the kernel and bias of the 

𝑘-th filter, respectively, and 𝑓(⋅) is a nonlinear activation function such as ReLU. This 

operation enables the network to learn local spatial patterns, which are combined across 

layers to form higher-level abstractions of the input image. 

In this study, the ResNet50 architecture was adopted and fine-tuned through transfer 

learning to leverage pre-trained large-scale visual representations for textile applications. 

ResNet50 introduces residual connections that facilitate gradient propagation through 

deep layers, effectively mitigating the vanishing gradient problem and improving model 

convergence. Transfer learning significantly reduced training time and enhanced 

generalization by adapting the model’s high-level features to the characteristics of the 

textile dataset. 

The trained model was deployed on an embedded inference engine within the industrial 

PC, enabling real-time analysis of continuous image streams. When a defect is detected, 

the system immediately issues a visual alarm message via the HMI, allowing operators 

to intervene without disrupting production. The multi-camera setup, coupled with 

robust preprocessing and lighting calibration, ensures stability under varying 

illumination and motion conditions. 

3.2.2. Design Evolution and Mechanical Modifications 

During prototype development, several iterative design changes were 

implemented to address limitations identified during early field trials. The four Daheng 

cameras were originally installed in fixed positions; however, stationary imaging proved 

insufficient for reliably resolving individual yarns within the yarn band, even at high 

resolution. To overcome this, each camera was mounted on a linear motion axis, enabling 

controlled movement across the yarn band width to enhance inspection coverage and 

detail accuracy. 
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Environmental exposure within the dyeing line necessitated further refinements. The 

cameras were first enclosed in transparent, tunnel-shaped plexiglass housings to prevent 

contamination from dust and moisture. External cleaning pads were mounted at both 

ends of each housing to automatically clean the viewing window during camera motion. 

While this solution effectively protected the optics, it introduced accessibility challenges 

for maintenance and alignment adjustments.  

 
Figure 3 - Placement of the camera in housing prototype-3 

Consequently, the design evolved into a modular form, in which each camera was 

enclosed in an individual plexiglass box that moved together with the camera along its 

guide rail. The cleaning pads were repositioned to the endpoints of the motion path, 

where the housing’s front surface was automatically cleaned when the camera reached 

either limit. 
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Figure 4 - Placement of the camera in housing 

prototype-4 

 
Figure 5 - Placement of the camera in housing 

prototype-5 

This iterative refinement significantly improved the mechanical reliability, 

maintainability, and image clarity of the vision subsystem. However, the dynamic motion 

setup introduced cable wear issues, which were later mitigated through the embedded-

PC integration discussed in Section 4. 

 
Figure 6 - Image of a non-defect yarn band 

 
Figure 7 - Image of a defect yarn band 

3.3. Colour-Based Process Control System 

The second subsystem is dedicated to colour stability and chemical control within the 

dyeing process. The camera developed for this optical monitoring task employs a custom-

designed spectroscopic configuration optimized for near-infrared sensing. The optical 

path begins with the incident light from the illuminated yarn surface, which is focused 

through a 25 mm focal length objective lens and directed toward a 30 μm-wide entrance 

slit. The light is then linearized and dispersed to achieve a spectral resolution of 

approximately 2.5 nm. 
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Figure 8 - Agteks Colour Detection Camera System 

The detector unit consists of a 320×256-pixel CMOS sensor, with each pixel measuring 30 

μm × 30 μm, and operates within a 900–1700 nm spectral range at a frame rate of 344 fps. 

The system dimensions—310 mm length, 60 mm width, and 65 mm height—make it 

compact enough for industrial integration near the dyeing bath. This camera system was 

developed by Agteks and represents a significant innovation in colorimetric process 

monitoring for textile applications, capable of detecting subtle chromatic variations 

beyond the visible spectrum. 

The camera continuously measures yarn colour and converts spectral data into CIELAB 

chromaticity parameters (a and b), which correspond to the red–green and yellow–blue 

colour axes, respectively. Through extensive laboratory calibration, the reference values 

were determined as a = 1.0203 and b = 0.4381. The real-time colour data are processed by 

a dedicated software that compares the live readings to these references using a ±0.20 

tolerance range. When deviations occur, the system applies empirically established 

control logic: increasing or decreasing pH and Hydro concentrations depending on 

whether the yarn shifts toward red/green or yellow/blue. 

To ensure robustness, median filtering is applied to the rolling data window to suppress 

transient noise and outliers. Suggested corrections are limited to ±20% per cycle to 

prevent overcompensation. Each corrective event is logged and monitored by the PLC, 

which updates process setpoints and transmits the recommendations to the operator via 

the HMI. Operators retain full authority to accept, ignore, or automate these adjustments, 

maintaining a balance between automatic precision and manual oversight. 
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Figure 9 - Placement of the colour detection system 

4. Results 

Following integration of the software and hardware subsystems, the complete system 

was deployed on an operational slasher dyeing line. Initial validation involved verifying 

all electrical and communication links between the cameras, processing units, and PLC. 

Functional testing confirmed that the image processing module correctly identified yarn 

defects and that the colour analysis module generated control recommendations 

consistent with laboratory measurements. During pilot production runs, the system 

accurately detected and flagged yarn defects in real time, while generating reliable 

chemical adjustment recommendations derived from live colour data. Operator feedback 

indicated that the user interface was intuitive and that the automation features 

significantly reduced manual monitoring requirements. 

Certain technical challenges were also identified and resolved during field trials. Uneven 

illumination conditions initially affected the consistency of defect detection. To mitigate 

this issue, the LED lighting system was modified to include dimmable functionality, 

allowing fine-tuned brightness control according to fabric colour and surface properties. 

Cable wear issues observed during extended operation were resolved by integrating 

embedded PCs directly into the camera housings, thereby shortening cable lengths and 

eliminating signal loss. These corrective measures improved both the stability and 

reliability of the system under industrial operating conditions. 

Comprehensive testing demonstrated that the integrated system achieved substantial 

improvements in both quality control and process efficiency. The defect detection 

module, built on a fine-tuned ResNet-50 network pretrained on ImageNet, was 

optimized through extensive trials. A batch size of 16 and 20 training epochs was found 

optimal for stable convergence and generalization. Training was conducted in two stages: 
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first, the pretrained layers were frozen and only the classification head (global average 

pooling, dropout 0.3, and a sigmoid-activated dense layer) was trained using the Adam 

optimizer with a learning rate of 1×10⁻⁴; then, the last 50 layers were unfrozen for fine-

tuning with a reduced learning rate (1×10⁻⁵), applying early stopping and model 

checkpointing to prevent overfitting. 

Under these conditions, the deep learning model achieved an average classification 

accuracy of 92.4% and a recall rate of 86.9%, ensuring that most defective yarns were 

correctly identified in real time. During extended operation, system uptime reached 

approximately 93%, while manual inspection workloads were reduced by nearly 35%. 

Furthermore, colour consistency across production batches improved significantly, with 

only minor deviations observed in CIELAB colour parameters under dynamic 

production conditions. 

Table 1: Performance Metrics of the Deep Learning Model 

Metric Value 

Accuracy 92.4% 

Precision 88.1% 

Sensitivity 85.7% 

F1-Score 86.9% 

AUC 0.94 

The synergy between data-driven defect detection and empirically derived chemical 

control rules provided a robust and interpretable decision-making framework. This 

integration bridged laboratory-level precision with practical shop-floor applicability, 

enabling operators to rely on quantitative feedback while maintaining process flexibility. 

The modular nature of the system also facilitates future scalability, allowing additional 

sensors or machine learning models to be integrated as production requirements evolve. 

5. Discussion and Conclusion 

This study presents a fully integrated computer vision and process control system for 

automating quality assurance in slasher indigo dyeing. By combining deep learning-

based defect detection with real-time chemical correction recommendations, the system 

advances the textile dyeing process toward a self-regulating and intelligent production 

paradigm. The proposed framework demonstrates that image-based monitoring and 
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chromaticity-driven chemical control can coexist as part of a unified digital architecture, 

reducing human intervention while maintaining reliability and precision. 

Future research will focus on expanding the dataset to include rare defect types, 

developing specialized sub-models for complex yarn anomalies, and implementing 

predictive analytics for proactive process optimization. Further work will also explore 

cloud-based remote monitoring and adaptive learning mechanisms to continuously 

enhance system performance. Overall, the developed approach provides a foundation for 

the digital transformation of traditional dyeing operations and offers a scalable model for 

next-generation smart textile manufacturing systems. 
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