The Comparison of the Group and Phase Velocity of the Polarized Wave and the Equatorial Anomaly of the Ionosphere

Main Article Content

Kadri Kurt
Melik Buğra Yeşil

Abstract

The behavior of phase and group velocities of a left-polarized wave in the F-region of the ionosphere is studied in this paper. Despite the fact that the magnitudes of a left polarized wave's phase and group velocities in the F-region of the ionosphere are almost identical at low latitudes, they are schematically asymmetric under acceptable conditions. Under the same conditions, the group velocity changes in the same way as the electron density in this region; however, the phase velocity changes in the opposite direction. According to the findings, the left-polarized wave's group velocity and electron density have a linear connection. The phase velocity, on the other hand, cannot be said to be the same.


Keywords: Ionosphere, The polarized wave, Group-phase velocity, Equatorial anomaly

Downloads

Download data is not yet available.

Article Details

How to Cite
Kurt, K., & Yeşil, M. B. (2022). The Comparison of the Group and Phase Velocity of the Polarized Wave and the Equatorial Anomaly of the Ionosphere. The European Journal of Research and Development, 2(2), 466–474. https://doi.org/10.56038/ejrnd.v2i2.93
Section
Articles

References

Rishbeth, H.(1973). Physics and chemistry of the ionosphere Contemp, Phys, 14(3), 229-240 DOI: https://doi.org/10.1080/00107517308210752

Rishbeth, H. and Garriot, O.K. (1969). Introduction to Ionospheric Physics, Academic Press, Pages iii-vii, 1-331 (1969)

Rishbeth, H. (1967). A Review of Ionospheric F Region Theory, Proceedings of The IEE. 55: 16-35. DOI: https://doi.org/10.1109/PROC.1967.5374

Swanson, D.G. (1989). Plasma waves, Academic Press, New York. DOI: https://doi.org/10.1887/075030927X

Budden, K.G.(1988). The Propagation of Radio Waves, Cambridge University Press, Cambridge,

Budden, K.G. Stott, G.F.(1980). Rays in magneto-ionic theory-II, J Atmos Sol Terr Phys, 42,791–800. DOI: https://doi.org/10.1016/0021-9169(80)90082-3

Richard, F. (2014). The physics of Plasma, CRC Press, New York 50–140.

Rawer, K. (1993).Wave Propagation in the Ionosphere, Kluwer Academic Publishers, London DOI: https://doi.org/10.1007/978-94-017-3665-7

Yesil, A. (2006).The Effect of the Electron Temperature on the Electric Polarization Coefficient of Ionospheric Plasma, International Journal of Science & Technology; 1 (2),125-130.

Yesil, A., Unal, I.82011). Electromagnetic Wave Propagation in Ionospheric Plasma, Behaviour of Electromagnetic Waves in Different Media and Structures, 189.

Hunsucker, R.D. (2003). and Hargreaves, J., K., The High-Latitude Ionosphere and its Effects on Radio Propagation, Cambridge University Press, 1-50. DOI: https://doi.org/10.1017/CBO9780511535758

Budden K G. (1985). The Propagation of Radio Waves, Cambridge Unıversıty Pres, Melbourne Sydney. DOI: https://doi.org/10.1017/CBO9780511564321

Whitten, R.C. Poppoff, I.G. ( 1971). Fundamentals of Aeoronmy, John Willey and Sons, New York.

Timocin, E. Yesil, A. Unal, I. (2014) The Effect of the Geomagnetic Activity to The Hourly Variations of Ionospheric foF2 Values at Low Latitudes, Arab. J. Geosci, 7 (10), 4437 – 4442. DOI: https://doi.org/10.1007/s12517-013-1108-x

Timocin, E. Yesil, A. Unal, I. (2020). The Responses of Ionospheric Conductivi-ties on the Mid-Latitudes to Changes in the BZ Component of Interplanetary Magnetic Field, Wireless Personal Communications, 114 (4), 2923-2932. DOI: https://doi.org/10.1007/s11277-020-07510-z

Timocin, E. Unal, I. Yesil, A.(2019). The Effect of the Mid-latitude Electron Density Trough on the Ionospheric Conductivities, Iran. J. Sci. Technol. Trans. A: Sci, 43 (1), 297–307. DOI: https://doi.org/10.1007/s40995-018-0578-9

Yesil, A. Sagir, S. (2019). Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere, Iran. J. Sci. Technol. Trans. A: Sci, 43 (1), 315–320. DOI: https://doi.org/10.1007/s40995-017-0408-5

Sagir, S. Yesil, A. (2018). The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices, Wireless Personal Communications, 102 (1),31–40. DOI: https://doi.org/10.1007/s11277-018-5823-1

Yesil, A. Kurt, K. (2018). Calculation of Electric Field Strength in The Iono-spheric F-region, Thermal Science, 22, 159–164. DOI: https://doi.org/10.2298/TSCI170630282Y

Sagir, S. Yesil, A. Sanac, G. Unal, I. (2014). The Characterization of Diffusion Tensor for Mid-Latitude Ionospheric Plasma, Ann. Geophys, 57 (2), A0216. DOI: https://doi.org/10.4401/ag-6469

Senalp, E.T. Unal, I. Yesil, A. Tulunay, Y. Tulunay, E. (2011). Two Possible Approaches for Ionospheric Forecasting to be Employed along with the IRI Model, 2011 30th URSI General Assembly and Scientific Symposium, URSI GASS, 6050921. DOI: https://doi.org/10.1109/URSIGASS.2011.6050921

Unal, I. Senalp, E.T. Yesil, A. Tulunay, E. Tulunay, Y. (2011). Performance of IRI-Based Ionospheric Critical Frequency Calculations concerning Forecasting, Radio Science, 46 (1): RS1004. DOI: https://doi.org/10.1029/2010RS004428

Sağir, S. Yaşar, M. Atici, R. (2019). The Relationship between Dst, IMF-Bz and Collision Parameters for O+ + N2 → NO+ + N Reactive Scattering in the Ionosphere, Geomagnetism and Aeronomy, 59, 1003–1008. DOI: https://doi.org/10.1134/S0016793219080176

Yasar, M. (2021). The Solar Eclıpse Effect On Dıffusıon Processes Of O+ + O2 → O2+ + O Reactıon For The Upper Ionosphere Over Kharkiv. Thermal Science, 25, Special Issue, S57-S63. DOI: https://doi.org/10.2298/TSCI200619007Y

Aydoğdu, M., Güzel, E. and Yeşil, A. (2002). Effects of the collisions on the phase and group velocities of HF waves propagating in the ionosphere around reflec-tions points, Turkish Journal of Telecommunications Vol:1, pp-79-89.