The Comparison of the Group and Phase Velocity of the Polarized Wave and the Equatorial Anomaly of the Ionosphere

Main Article Content

Kadri Kurt
Melik Buğra Yeşil


The behavior of phase and group velocities of a left-polarized wave in the F-region of the ionosphere is studied in this paper. Despite the fact that the magnitudes of a left polarized wave's phase and group velocities in the F-region of the ionosphere are almost identical at low latitudes, they are schematically asymmetric under acceptable conditions. Under the same conditions, the group velocity changes in the same way as the electron density in this region; however, the phase velocity changes in the opposite direction. According to the findings, the left-polarized wave's group velocity and electron density have a linear connection. The phase velocity, on the other hand, cannot be said to be the same.

Keywords: Ionosphere, The polarized wave, Group-phase velocity, Equatorial anomaly


Download data is not yet available.

Article Details

How to Cite
Kurt, K., & Yeşil, M. B. (2022). The Comparison of the Group and Phase Velocity of the Polarized Wave and the Equatorial Anomaly of the Ionosphere. The European Journal of Research and Development, 2(2), 466–474.


Rishbeth, H.(1973). Physics and chemistry of the ionosphere Contemp, Phys, 14(3), 229-240 DOI:

Rishbeth, H. and Garriot, O.K. (1969). Introduction to Ionospheric Physics, Academic Press, Pages iii-vii, 1-331 (1969)

Rishbeth, H. (1967). A Review of Ionospheric F Region Theory, Proceedings of The IEE. 55: 16-35. DOI:

Swanson, D.G. (1989). Plasma waves, Academic Press, New York. DOI:

Budden, K.G.(1988). The Propagation of Radio Waves, Cambridge University Press, Cambridge,

Budden, K.G. Stott, G.F.(1980). Rays in magneto-ionic theory-II, J Atmos Sol Terr Phys, 42,791–800. DOI:

Richard, F. (2014). The physics of Plasma, CRC Press, New York 50–140.

Rawer, K. (1993).Wave Propagation in the Ionosphere, Kluwer Academic Publishers, London DOI:

Yesil, A. (2006).The Effect of the Electron Temperature on the Electric Polarization Coefficient of Ionospheric Plasma, International Journal of Science & Technology; 1 (2),125-130.

Yesil, A., Unal, I.82011). Electromagnetic Wave Propagation in Ionospheric Plasma, Behaviour of Electromagnetic Waves in Different Media and Structures, 189.

Hunsucker, R.D. (2003). and Hargreaves, J., K., The High-Latitude Ionosphere and its Effects on Radio Propagation, Cambridge University Press, 1-50. DOI:

Budden K G. (1985). The Propagation of Radio Waves, Cambridge Unıversıty Pres, Melbourne Sydney. DOI:

Whitten, R.C. Poppoff, I.G. ( 1971). Fundamentals of Aeoronmy, John Willey and Sons, New York.

Timocin, E. Yesil, A. Unal, I. (2014) The Effect of the Geomagnetic Activity to The Hourly Variations of Ionospheric foF2 Values at Low Latitudes, Arab. J. Geosci, 7 (10), 4437 – 4442. DOI:

Timocin, E. Yesil, A. Unal, I. (2020). The Responses of Ionospheric Conductivi-ties on the Mid-Latitudes to Changes in the BZ Component of Interplanetary Magnetic Field, Wireless Personal Communications, 114 (4), 2923-2932. DOI:

Timocin, E. Unal, I. Yesil, A.(2019). The Effect of the Mid-latitude Electron Density Trough on the Ionospheric Conductivities, Iran. J. Sci. Technol. Trans. A: Sci, 43 (1), 297–307. DOI:

Yesil, A. Sagir, S. (2019). Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere, Iran. J. Sci. Technol. Trans. A: Sci, 43 (1), 315–320. DOI:

Sagir, S. Yesil, A. (2018). The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices, Wireless Personal Communications, 102 (1),31–40. DOI:

Yesil, A. Kurt, K. (2018). Calculation of Electric Field Strength in The Iono-spheric F-region, Thermal Science, 22, 159–164. DOI:

Sagir, S. Yesil, A. Sanac, G. Unal, I. (2014). The Characterization of Diffusion Tensor for Mid-Latitude Ionospheric Plasma, Ann. Geophys, 57 (2), A0216. DOI:

Senalp, E.T. Unal, I. Yesil, A. Tulunay, Y. Tulunay, E. (2011). Two Possible Approaches for Ionospheric Forecasting to be Employed along with the IRI Model, 2011 30th URSI General Assembly and Scientific Symposium, URSI GASS, 6050921. DOI:

Unal, I. Senalp, E.T. Yesil, A. Tulunay, E. Tulunay, Y. (2011). Performance of IRI-Based Ionospheric Critical Frequency Calculations concerning Forecasting, Radio Science, 46 (1): RS1004. DOI:

Sağir, S. Yaşar, M. Atici, R. (2019). The Relationship between Dst, IMF-Bz and Collision Parameters for O+ + N2 → NO+ + N Reactive Scattering in the Ionosphere, Geomagnetism and Aeronomy, 59, 1003–1008. DOI:

Yasar, M. (2021). The Solar Eclıpse Effect On Dıffusıon Processes Of O+ + O2 → O2+ + O Reactıon For The Upper Ionosphere Over Kharkiv. Thermal Science, 25, Special Issue, S57-S63. DOI:

Aydoğdu, M., Güzel, E. and Yeşil, A. (2002). Effects of the collisions on the phase and group velocities of HF waves propagating in the ionosphere around reflec-tions points, Turkish Journal of Telecommunications Vol:1, pp-79-89.