The Numerical Analysis of The Group and Phase Velocity of Waves in The Ionosphere is Thought to Be Collision-Free

Main Article Content

Kadri Kurt
Melik Buğra Yeşil

Abstract

The behavior of phase and group velocities of waves occurring in the ionosphere, which is considered collision-free, is the focus of this article. The phase velocities of the waves (ordinary, polarized waves) occurring in the ionosphere are larger than the speed of light, whereas the group velocities are less than the speed of light, according to the findings. The phase velocities are compatible with changes in electron density under acceptable conditions, however, the group velocities show an antisymmetric variation with the electron density. In the northern hemisphere, the extra-ordinary wave takes negative values, while in the southern hemisphere, it takes positive values.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kurt, K., & Yeşil, M. B. (2022). The Numerical Analysis of The Group and Phase Velocity of Waves in The Ionosphere is Thought to Be Collision-Free. The European Journal of Research and Development, 2(2), 459–465. https://doi.org/10.56038/ejrnd.v2i2.92
Section
Articles

References

REFERENCES

. Rishbeth, H.(1973). Physics and chemistry of the ionosphere Contemp, Phys, 14(3), 229-240 DOI: https://doi.org/10.1080/00107517308210752

. Rishbeth, H. and Garriot, O.K. (1969). Introduction to Ionospheric Physics, Academic Press, Pages iii-vii, 1-331 (1969)

. Rishbeth, H. (1967). A Review of Ionospheric F Region Theory, Proceedings of The IEE. 55: 16-35. DOI: https://doi.org/10.1109/PROC.1967.5374

. Swanson, D.G. (1989). Plasma waves, Academic Press, New York. DOI: https://doi.org/10.1887/075030927X

. Budden, K.G.(1988). The Propagation of Radio Waves, Cambridge University Press, Cambridge,

. Budden, K.G. Stott, G.F.(1980). Rays in magneto-ionic theory-II, J Atmos Sol Terr Phys, 42,791–800. DOI: https://doi.org/10.1016/0021-9169(80)90082-3

. Richard, F. (2014). The physics of Plasma, CRC press, New York 50–140.

. Rawer, K. (1993).Wave Propagation in the Ionosphere, Kluwer Academic Publishers, London DOI: https://doi.org/10.1007/978-94-017-3665-7

. Yesil, A. (2006).The Effect of the Electron Temperature on the Electric Polarization Coefficient of Ionospheric Plasma, International Journal of Science & Technology; 1 (2),125-130.

. Yesil, A., Unal, I.82011). Electromagnetic Wave Propagation in Ionospheric Plasma, Behaviour of Electromagnetic Waves in Different Media and Structures, 189.

. Hunsucker, R.D. (2003). and Hargreaves, J., K., The High-Latitude Ionosphere and its Effects on Radio Propagation, Cambridge University Press, 1-50. DOI: https://doi.org/10.1017/CBO9780511535758

. Budden K G. (1985). The Propagation of Radio Waves, Cambridge Unıversıty Pres, Melbourne Sydney. DOI: https://doi.org/10.1017/CBO9780511564321

. Whitten, R.C. Poppoff, I.G. ( 1971). Fundamentals of Aeoronmy, John Willey and Sons, New York.

. Timocin, E. Yesil, A. Unal, I. (2014) The Effect of the Geomagnetic Activity to The Hourly Variations of Ionospheric foF2 Values at Low Latitudes, Arab. J. Geosci, 7 (10), 4437 – 4442. DOI: https://doi.org/10.1007/s12517-013-1108-x

. Timocin, E. Yesil, A. Unal, I. (2020). The Responses of Ionospheric Conductivities on the Mid-Latitudes to Changes in the BZ Component of Interplanetary Magnetic Field, Wireless Personal Communications, 114 (4), 2923-2932. DOI: https://doi.org/10.1007/s11277-020-07510-z

. Timocin, E. Unal, I. Yesil, A.(2019). The Effect of the Mid-latitude Electron Density Trough on the Ionospheric Conductivities, Iran. J. Sci. Technol. Trans. A: Sci, 43 (1), 297–307. DOI: https://doi.org/10.1007/s40995-018-0578-9

. Yesil, A. Sagir, S. (2019). Updating Conductivity Tensor of Cold and Warm Plasma for Equatorial Ionosphere F2-Region in The Northern Hemisphere, Iran. J. Sci. Technol. Trans. A: Sci, 43 (1), 315–320. DOI: https://doi.org/10.1007/s40995-017-0408-5

. Sagir, S. Yesil, A. (2018). The Relation Between the Refractive Index of the Equatorial Ionospheric F2 Region and Long-Term Solar Indices, Wireless Personal Communications, 102 (1),31–40. DOI: https://doi.org/10.1007/s11277-018-5823-1

. Yesil, A. Kurt, K. (2018). Calculation of Electric Field Strength in The Ionospheric F-region, Thermal Science, 22, 159–164. DOI: https://doi.org/10.2298/TSCI170630282Y

. Sagir, S. Yesil, A. Sanac, G. Unal, I. (2014). The Characterization of Diffusion Tensor for Mid-Latitude Ionospheric Plasma, Ann. Geophys, 57 (2), A0216. DOI: https://doi.org/10.4401/ag-6469

. Senalp, E.T. Unal, I. Yesil, A. Tulunay, Y. Tulunay, E. (2011). Two Possible Approaches for Ionospheric Forecasting to be Employed along with the IRI Model, 2011 30th URSI General Assembly and Scientific Symposium, URSIGASS, 6050921. DOI: https://doi.org/10.1109/URSIGASS.2011.6050921

. Unal, I. Senalp, E.T. Yesil, A. Tulunay, E. Tulunay, Y. (2011). Performance of IRI-Based Ionospheric Critical Frequency Calculations with Reference to Forecasting, Radio Science, 46 (1): RS1004. DOI: https://doi.org/10.1029/2010RS004428

. Sağir, S. Yaşar, M. Atici, R. (2019). The Relationship between Dst, IMF-Bz and Collision Parameters for O+ + N2 → NO+ + N Reactive Scattering in the Ionosphere, Geomagnetism and Aeronomy, 59, 1003–1008. DOI: https://doi.org/10.1134/S0016793219080176

. Yasar, M. (2021). The Solar Eclıpse Effect On Dıffusıon Processes Of O+ + O2 → O2+ + O Reactıon For The Upper Ionosphere Over Kharkiv. Thermal Science, 25, Special Issue, S57-S63. DOI: https://doi.org/10.2298/TSCI200619007Y

. Aydoğdu, M., Güzel, E. and Yeşil, A. (2002). Effects of the collisions on the phase and group velocities of HF waves propagating in the ionosphere around reflections points, Turkish Journal of Telecommunications Vol:1, pp-79-89.