Analysis of Dual-Band Plasmonic Nanoantenna with Ultra-Thin Circular Gold Layers in Visible Region

Main Article Content

Hayriye Demirtas
Mustafa Turkmen
Ekin Aslan
Erdem Aslan


Aperture-based plasmonic nanoantenna design with dual-band resonance obtained in the region very close to the green wavelength in the spectrum between 400 nm and 700 nm, which can be used in non-invasive biological sensing applications in the future, is presented. In this circular aperture-based nanoantenna design, the effect of changing the material thickness and dielectric medium parameters on the antenna response is investigated. In the nanoantenna design using a double-layer conductive gold layer, both of thickness values are reduced to 5 nm. It is observed that this thickness value exhibits a very strong transmittance response compared to the thicker gold layer values used in the visible region. In this nanoantenna, which exhibits dual band properties at 508 and 551 nm wavelengths, the strongest transmittance peaks are obtained for 5 nm thickness of gold, 100 nm thickness of magnesium fluoride and the 100 nm radius of the circular aperture. In order to contribute to spectroscopic sensing applications, hot spots locations and near field enhancement distribution maps are also examined.


Download data is not yet available.

Article Details

How to Cite
Demirtas, H., Turkmen, M. ., Aslan, E. ., & Aslan, E. (2022). Analysis of Dual-Band Plasmonic Nanoantenna with Ultra-Thin Circular Gold Layers in Visible Region. The European Journal of Research and Development, 2(2), 329–337.


Gerrits, M. M., van Vliet, A. H., Kuipers, E. J., & Kusters, J. G. (2006). “Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications.”, The Lancet infectious diseases, 6(11), 699-709. DOI:

Kawai, S., Arai, K., Lin, Y., Nishiyama, T., Sasakabe, T., Wang, C. & Kikuchi, S. (2019). Comparison of the detection of Helicobacter pylori infection by commercially available serological testing kits and the 13C-urea breath test. Journal of Infection and Chemotherapy, 25(10), 769-773. DOI:

Seddon, A. B. (2013). Mid‐infrared (IR)–A hot topic: The potential for using mid‐IR light for non‐invasive early detection of skin cancer in vivo. physica status solidi (b), 250(5), 1020-1027. DOI:

Cao, J., Sun, T., & Grattan, K. T. (2014). Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and actuators B: Chemical, 195, 332-351. DOI:

Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. nature, 424(6950), 824-830. DOI:

Aslan, E., Aslan, E., Turkmen, M., & Saracoglu, O. G. (2017). Metamaterial plasmonic absorber for reducing the spectral shift between near-and far-field responses in surface-enhanced spectroscopy applications. Sensors and Actuators A: Physical, 267, 60-69. DOI:

Chen, H., Ran, L., Huangfu, J., Zhang, X., Chen, K., Grzegorczyk, T. M., & Kong, J. A. (2004). Metamaterial exhibiting left-handed properties over multiple frequency bands. Journal of Applied Physics, 96(9), 5338-5340. DOI:

Thio, T., Ghaemi, H. F., Lezec, H. J., Wolff, P. A., & Ebbesen, T. W. (1999). Surface-plasmon-enhanced transmission through hole arrays in Cr films. JOSA B, 16(10), 1743-1748. DOI:

Azad, A. K., Zhao, Y., & Zhang, W. (2005). Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array. Applied Physics Letters, 86(14), 141102. DOI:

Degiron, A., Lezec, H. J., Barnes, W. L., & Ebbesen, T. W. (2002). Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Applied Physics Letters, 81(23), 4327-4329. DOI:

Aslan, E., Aslan, E., Saracoglu, O. G., & Turkmen, M. (2019). An effective triple-band enhanced-infrared-absorption detection by honeycomb-shaped metamaterial-plasmonic absorber. Sensors and Actuators A: Physical, 288, 149-155. DOI:

Aslan, E., Kaya, S., Aslan, E., Korkmaz, S., Saracoglu, O. G., & Turkmen, M. (2017). Polarization insensitive plasmonic perfect absorber with coupled antisymmetric nanorod array. Sensors and Actuators B: Chemical, 243, 617-625. DOI:

Korkmaz, S., Turkmen, M., & Aksu, S. (2020). Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy. Sensors and Actuators A: Physical, 301, 111757. DOI:

Cetin, A. E., Kaya, S., Mertiri, A., Aslan, E., Erramilli, S., Altug, H., & Turkmen, M. (2015). Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics and Nanostructures-Fundamentals and Applications, 15, 73-80. DOI:

Schuller, J. A. (2010). Edward Barnard, Wenshan Cai, Young Chul Jun, Justin White, Mark L. Brongersma, Invited Review for Nature Materials, 9, 193-204. Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., & Zhao, J. Van duyne RP (2008). Biosensing with plasmonic nanosensors. Nat. Mater, 7, 442-453. DOI:

Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured plasmonic sensors. Chemical reviews, 108(2), 494-521. DOI:

Aslan, E., Aslan, E., Turkmen, M., & Saracoglu, O. G. (2017). Experimental and numerical characterization of a mid-infrared plasmonic perfect absorber for dual-band enhanced vibrational spectroscopy. Optical Materials, 73, 213-222. DOI:

Chen, K., Adato, R., & Altug, H. (2012). Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS nano, 6(9), 7998-8006. DOI:

E.D. Palik, Handbook of Optical Constants of Solids, vol. III, Academic Press,1998.

Cetin, A. E., & Topkaya, S. N. (2019). Plasmonic diffraction field pattern imaging could resolve ultrasensitive bioinformation. ACS Photonics, 6(11), 2626-2635. DOI:

Gopalan, K. K., Paulillo, B., Mackenzie, D. M., Rodrigo, D., Bareza, N., Whelan, P. R., ... & Pruneri, V. (2018). Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano letters, 18(9), 5913-5918. DOI: