Embedding of Regional Adjacency Graph in Textile Image Classification with Deep Learning Application

Main Article Content

Ömer Akgüller
Mehmet Ali Balcı
Aysu İldeniz
Duygu Yavuzkasap Ayakta

Abstract

The image classification problem is a process that many machine learning methods are trying to solve. Graphs, which are combinatorial mathematical structures, are frequently used in machine learning problems. In this study, a method using machine learning based embeddings of weighted regional graphs for image classification problem is proposed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Akgüller, Ömer, Balcı, M. A., İldeniz, A., & Yavuzkasap Ayakta , D. (2022). Embedding of Regional Adjacency Graph in Textile Image Classification with Deep Learning Application. The European Journal of Research and Development, 2(2), 315–328. https://doi.org/10.56038/ejrnd.v2i2.71
Section
Articles

References

Babina, T., Fedyk, A., He, A. X., & Hodson, J. (2020). Artificial intelligence, firm growth, and industry concentration. Firm Growth, and Industry Concentration (November 22, 2020). DOI: https://doi.org/10.2139/ssrn.3651052

Bolton, C., Machová, V., Kovacova, M., & Valaskova, K. (2018). The power of human–machine collaboration: Artificial intelligence, business automation, and the smart economy. Economics, Management, and Financial Markets, 13(4), 51-56. DOI: https://doi.org/10.22381/EMFM13420184

Thoben, K. D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International journal of automation technology, 11(1), 4-16. DOI: https://doi.org/10.20965/ijat.2017.p0004

Bullon, J., González Arrieta, A., Hernández Encinas, A., & Queiruga Dios, A. (2017). Manufacturing processes in the textile industry. Expert Systems for fabrics production. DOI: https://doi.org/10.14201/ADCAIJ2017614150

Perez, J. J. B., Arrieta, A. G., Encinas, A. H., & Dios, M. A. Q. (2017). Manufacturing processes in the textile industry. Expert Systems for fabrics production. Adcaij-Advances in Distributed Computing and Artificial Intelligence Journal, 6(4), 15-23. DOI: https://doi.org/10.14201/ADCAIJ2017641523

Hanbay, K., Talu, M. F., & Özgüven, Ö. F. (2016). Fabric defect detection systems and methods—A systematic literature review. Optik, 127(24), 11960-11973. DOI: https://doi.org/10.1016/j.ijleo.2016.09.110

Mahajan, P. M., Kolhe, S. R., & Patil, P. M. (2009). A review of automatic fabric defect detection techniques. Advances in Computational Research, 1(2), 18-29.

Song, L., Li, R., & Chen, S. (2020). Fabric defect detection based on membership degree of regions. IEEE Access, 8, 48752-48760. DOI: https://doi.org/10.1109/ACCESS.2020.2978900

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014, August). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710). DOI: https://doi.org/10.1145/2623330.2623732

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.

Grover, A., & Leskovec, J. (2016, August). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855-864). DOI: https://doi.org/10.1145/2939672.2939754

Cao, S., Lu, W., & Xu, Q. (2015, October). Grarep: Learning graph representations with global structural information. In Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 891-900). DOI: https://doi.org/10.1145/2806416.2806512

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015, May). Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web (pp. 1067-1077). DOI: https://doi.org/10.1145/2736277.2741093

Lauzon, F. Q. (2012, July). An introduction to deep learning. In 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA) (pp. 1438-1439). IEEE. DOI: https://doi.org/10.1109/ISSPA.2012.6310529

Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple deep learning baseline for image classification?. IEEE transactions on image processing, 24(12), 5017-5032. DOI: https://doi.org/10.1109/TIP.2015.2475625

Sadad, T., Khan, A. R., Hussain, A., Tariq, U., Fati, S. M., Bahaj, S. A., & Munir, A. (2021). Internet of medical things embedding deep learning with data augmentation for mammogram density classification. Microscopy Research and Technique, 84(9), 2186-2194. DOI: https://doi.org/10.1002/jemt.23773

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning--based text classification: a comprehensive review. ACM Computing Surveys (CSUR), 54(3), 1-40.References should be cited in the text by name and year in parentheses. DOI: https://doi.org/10.1145/3439726

Example:

Khare, S. K., & Bajaj, V. (2020). Time–frequency representation and convolutional neural network-based emotion recognition. IEEE transactions on neural networks and learning systems, 32(7), 2901-2909. DOI: https://doi.org/10.1109/TNNLS.2020.3008938

Oralhan, Z., Oralhan, B., & Yiğit, Y. (2017). Smart city application: Internet of things (IoT) technologies based smart waste collection using data mining approach and ant colony optimization. Internet Things, 14(4), 5.