AI-Driven Pricing Algorithms for Efficient Inventory and Cost Management in Retail
Main Article Content
Abstract
This paper discusses the creation and application of a software that uses AI for pricing and stock management, aimed at improving Koçtaş's pricing strategy and inventory management. The software uses advanced machine learning techniques to examine past sales data, inventory levels, and market conditions, allowing for real-time adjustments to pricing. Integrating the AI system with Koçtaş's current analytical platform improves pricing accuracy, decreases excess stock, and lessens reliance on outside services. This paper discusses the methods used to build the system, covering aspects such as data collection, model development, and system integration. This system greatly simplifies Koçtaş’s pricing processes, minimizes manual errors, and enhances operational efficiency. The software helps improve stock management by decreasing excess inventory, especially for delisted products and those with high SGS values. It also optimizes pricing strategies according to real-time market conditions. Additionally, the system's capability to adjust to market changes helps Koçtaş stay competitive in the retail industry. The paper discusses future improvements, such as refining machine learning models for better accuracy, adding more features to the system, and enhancing scalability and user interface design. This study shows the potential of AI in today's retail pricing and inventory management.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahmad, H. W., Zilles, S., Hamilton, H. J., & Dosselmann, R. (2016). Prediction of retail prices of products using local competitors. International Journal of Business Intelligence and Data Mining, 11(1), 19-30. DOI: https://doi.org/10.1504/IJBIDM.2016.076418
Sousa, C., Manuela Gonçalves, A., & da Costa Freitas, A. (2024, July). Categories’s Churn: A Machine Learning Approach in Retail. In International Conference on Computational Science and Its Applications (pp. 319-336). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-65154-0_20
Kaneko, Y., & Yada, K. (2016, December). A deep learning approach for the prediction of retail store sales. In 2016 IEEE 16th International conference on data mining workshops (ICDMW) (pp. 531-537). IEEE. DOI: https://doi.org/10.1109/ICDMW.2016.0082
Adetunji, A. B., Akande, O. N., Ajala, F. A., Oyewo, O., Akande, Y. F., & Oluwadara, G. (2022). House price prediction using random forest machine learning technique. Procedia Computer Science, 199, 806-813. DOI: https://doi.org/10.1016/j.procs.2022.01.100
Venigandla, K., Vemuri, N., Thaneeru, N., & Tatikonda, V. M. (2023). Leveraging AI-Enhanced Robotic Process Automation for Retail Pricing Optimization: A Comprehensive Analysis. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(2), 361-370. DOI: https://doi.org/10.60087/jklst.vol2.n2.p370
Rafiei Oskooei, A., Yahsi, E., Sungur, M., & S. Aktas, M. (2024, July). Can One Model Fit All? An Exploration of Wav2Lip’s Lip-Syncing Generalizability Across Culturally Distinct Languages. In International Conference on Computational Science and Its Applications (pp. 149-164). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-65282-0_10
Oosthuizen, K., Botha, E., Robertson, J., & Montecchi, M. (2021). Artificial intelligence in retail: The AI-enabled value chain. Australasian Marketing Journal, 29(3), 264-273. DOI: https://doi.org/10.1016/j.ausmj.2020.07.007
Chen, L., Yang, Y., & Xu, Q. (2021). Retail dynamic pricing strategy design considering the fluctuations in day-ahead market using integrated demand response. International Journal of Electrical Power & Energy Systems, 130, 106983. DOI: https://doi.org/10.1016/j.ijepes.2021.106983
Yang, C., Feng, Y., & Whinston, A. (2022). Dynamic pricing and information disclosure for fresh produce: An artificial intelligence approach. Production and Operations Management, 31(1), 155-171. DOI: https://doi.org/10.1111/poms.13525
den Boer, A. V., & Keskin, N. B. (2022). Dynamic pricing with demand learning and reference effects. Management Science, 68(10), 7112-7130. DOI: https://doi.org/10.1287/mnsc.2021.4234
Ban, G. Y., & Keskin, N. B. (2021). Personalized dynamic pricing with machine learning: High-dimensional features and heterogeneous elasticity. Management Science, 67(9), 5549-5568. DOI: https://doi.org/10.1287/mnsc.2020.3680
Bharadiya, J. P. (2023). Machine learning and AI in business intelligence: Trends and opportunities. International Journal of Computer (IJC), 48(1), 123-134.
Kondapaka, K. K. (2021). AI-Driven Inventory Optimization in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications. Journal of Bioinformatics and Artificial Intelligence, 1(1), 377-409.
Jauhar, S. K., Jani, S. M., Kamble, S. S., Pratap, S., Belhadi, A., & Gupta, S. (2024). How to use no-code artificial intelligence to predict and minimize the inventory distortions for resilient supply chains. International Journal of Production Research, 62(15), 5510-5534. DOI: https://doi.org/10.1080/00207543.2023.2166139
Richards, T. J., Liaukonyte, J., & Streletskaya, N. A. (2016). Personalized pricing and price fairness. International Journal of Industrial Organization, 44, 138-153. DOI: https://doi.org/10.1016/j.ijindorg.2015.11.004
Pandey, A., & Caliskan, A. (2021, July). Disparate impact of artificial intelligence bias in ridehailing economy's price discrimination algorithms. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 822-833). DOI: https://doi.org/10.1145/3461702.3462561
Guveyi, E., Aktas, M. S., & Kalipsiz, O. (2020). Human factor on software quality: A systematic literature review. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, C. M. Torre, & Y. Karaca (Eds.), Computational Science and Its Applications – ICCSA 2020. Lecture Notes in Computer Science (pp. 918–930). Springer. DOI: https://doi.org/10.1007/978-3-030-58811-3_65
Aktas, M. S., & Kapdan, M. (2016). Structural code clone detection methodology using software metrics. International Journal of Software Engineering and Knowledge Engineering, 26(2), 307–332. DOI: https://doi.org/10.1142/S0218194016500133
Oz, M., Kaya, C., Olmezogullari, E., & Aktas, M. S. (2021). On the use of generative deep learning approaches for generating hidden test scripts. International Journal of Software Engineering and Knowledge Engineering, 31(10), 1447–1468. DOI: https://doi.org/10.1142/S0218194021500480
Oguz, R.F., Oz, M., Olmezogullari, E., Aktas, M. S. (2022). Extracting Information from Large Scale Graph Data: Case Study on Automated UI Testing, Euro-Par 2021: Parallel Processing Workshops, LNCS, volume 13098. DOI: https://doi.org/10.1007/978-3-031-06156-1_29
Uzun-Per, M., Can, A. B., Gurel, A. V., & Aktas, M. S. (2021). Big data testing framework for recommendation systems in e-science and e-commerce domains. 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9672082
Erdem, I., Oguz, R. F., Olmezogullari, E., & Aktas, M. S. (2021). Test script generation based on hidden Markov models learning from user browsing behaviors 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9671312
Düzen, Z., & Aktas, M. S. (2016). An approach to hybrid personalized recommender systems. 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 2-5 Ağustos 2016, Sinaia, Romanya. DOI: https://doi.org/10.1109/INISTA.2016.7571865
Uzun-Per, M., Gurel, A. V., Can, A. B., & Aktas, M. S. (2022). Scalable recommendation systems based on finding similar items and sequences. Concurrency and Computation: Practice and Experience, 34(20). DOI: https://doi.org/10.1002/cpe.6841
Yildiz, B. (2022, September). Enhancing image resolution with generative adversarial networks. In 2022 7th International Conference on Computer Science and Engineering (UBMK) (pp. 104–109). IEEE. DOI: https://doi.org/10.1109/UBMK55850.2022.9919520
Yıldız, B. (2022). Efficient text classification with deep learning on imbalanced data improved with better distribution. Turkish Journal of Science and Technology, 17(1), 89–98. DOI: https://doi.org/10.55525/tjst.1068940
Briman, M. K. H., & Yildiz, B. (2024). Beyond ROUGE: A comprehensive evaluation metric for abstractive summarization leveraging similarity, entailment, and acceptability. International Journal on Artificial Intelligence Tools. DOI: https://doi.org/10.1142/S0218213024500179
Saad, A. M. S. E., & Yildiz, B. (2022, September). Reinforcement learning for intrusion detection. In International Conference on Computing, Intelligence and Data Analytics (pp. 230–243). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-27099-4_18
Haider, U., & Yildiz, B. (2023, December). A novel use of reinforcement learning for elevated click-through rate in online advertising. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 64–70). IEEE. DOI: https://doi.org/10.1109/CSCI62032.2023.00017
Yildiz, B. (2021). Optimizing bitmap index encoding for high performance queries. Concurrency and Computation: Practice and Experience, 33(18), e5943. DOI: https://doi.org/10.1002/cpe.5943
Yildiz, B., & Tezgider, M. (2020). Learning quality improved word embedding with assessment of hyperparameters. In Euro-Par 2019: Parallel Processing Workshops: Euro-Par 2019 International Workshops, Göttingen, Germany, August 26–30, 2019, Revised Selected Papers 25 (pp. 506–518). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-48340-1_39