Development of an Analytical-Based Campaign and Loyalty Platform for Enhanced Customer Engagement
Main Article Content
Abstract
This project aims to create a data-driven platform for Koçtaş to improve its marketing strategies by implementing personalized campaigns, refining customer segmentation, and optimizing loyalty programs. The platform brings together customer data from different sources into one place, allowing for a complete understanding of customer behavior. The system uses machine learning and analytics to create specific recommendations, enhance customer engagement, and simplify the management of campaigns. Initial findings show notable advancements in keeping customers, increasing sales, and enhancing operational efficiency. The platform automates marketing tasks, which lessens the need for manual work, improves the accuracy of campaigns, and aids in making decisions in real-time. Additionally, bringing Koçtaş's CRM capabilities in-house has lowered costs and enhanced data quality, ensuring compliance and decreasing dependence on external providers. Future work will focus on enhancing the platform by adding new data sources, using advanced predictive models, and looking into innovative technologies such as augmented reality. This continuous improvement will help the platform adjust to evolving business requirements and support Koçtaş's sustained growth and competitive edge in the retail industry.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Fernandes, T., & Esteves, F. (2016). Customer engagement and loyalty: A comparative study between service contexts. Services Marketing Quarterly, 37(2), 125-139. DOI: https://doi.org/10.1080/15332969.2016.1154744
Sousa, C., Manuela Gonçalves, A., & da Costa Freitas, A. (2024, July). Categories’s Churn: A Machine Learning Approach in Retail. In International Conference on Computational Science and Its Applications (pp. 319-336). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-65154-0_20
Bruneau, V., Swaen, V., & Zidda, P. (2018). Are loyalty program members really engaged? Measuring customer engagement with loyalty programs. Journal of Business Research, 91, 144-158. DOI: https://doi.org/10.1016/j.jbusres.2018.06.002
Thakur, R. (2016). Understanding customer engagement and loyalty: a case of mobile devices for shopping. Journal of Retailing and consumer Services, 32, 151-163. DOI: https://doi.org/10.1016/j.jretconser.2016.06.004
Greve, G. (2014). The moderating effect of customer engagement on the brand image–brand loyalty relationship. Procedia-Social and Behavioral Sciences, 148, 203-210. DOI: https://doi.org/10.1016/j.sbspro.2014.07.035
Rane, N. (2023). Enhancing customer loyalty through Artificial Intelligence (AI), Internet of Things (IoT), and Big Data technologies: improving customer satisfaction, engagement, relationship, and experience. Internet of Things (IoT), and Big Data Technologies: Improving Customer Satisfaction, Engagement, Relationship, and Experience (October 13, 2023). DOI: https://doi.org/10.2139/ssrn.4616051
Aluri, A., Price, B. S., & McIntyre, N. H. (2019). Using machine learning to cocreate value through dynamic customer engagement in a brand loyalty program. Journal of Hospitality & Tourism Research, 43(1), 78-100. DOI: https://doi.org/10.1177/1096348017753521
Levy, S., & Hino, H. (2016). Emotional brand attachment: a factor in customer-bank relationships. International Journal of Bank Marketing, 34(2), 136-150. DOI: https://doi.org/10.1108/IJBM-06-2015-0092
Rafiei Oskooei, A., Yahsi, E., Sungur, M., & S. Aktas, M. (2024, July). Can One Model Fit All? An Exploration of Wav2Lip’s Lip-Syncing Generalizability Across Culturally Distinct Languages. In International Conference on Computational Science and Its Applications (pp. 149-164). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-65282-0_10
Gao, Y., & Liu, H. (2023). Artificial intelligence-enabled personalization in interactive marketing: a customer journey perspective. Journal of Research in Interactive Marketing, 17(5), 663-680. DOI: https://doi.org/10.1108/JRIM-01-2022-0023
Islam, T., Miron, A., Nandy, M., Choudrie, J., Liu, X., & Li, Y. (2024). Transforming digital marketing with generative AI. Computers, 13(7), 168. DOI: https://doi.org/10.3390/computers13070168
Tong, S., Luo, X., & Xu, B. (2020). Personalized mobile marketing strategies. Journal of the Academy of Marketing Science, 48, 64-78. DOI: https://doi.org/10.1007/s11747-019-00693-3
Kshetri, N., Dwivedi, Y. K., Davenport, T. H., & Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716. DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102716
Furman, A., & Maison, D. (2020). Influence of different cause-related marketing (CRM) strategies on consumer decision making. Procedia Computer Science, 176, 2979-2988. DOI: https://doi.org/10.1016/j.procs.2020.09.205
Chatterjee, S., Ghosh, S. K., Chaudhuri, R., & Chaudhuri, S. (2021). Adoption of AI-integrated CRM system by Indian industry: from security and privacy perspective. Information & Computer Security, 29(1), 1-24. DOI: https://doi.org/10.1108/ICS-02-2019-0029
Krafft, M., Arden, C. M., & Verhoef, P. C. (2017). Permission marketing and privacy concerns—Why do customers (not) grant permissions?. Journal of interactive marketing, 39(1), 39-54. DOI: https://doi.org/10.1016/j.intmar.2017.03.001
Kabir, M. H., Sobur, A., & Amin, M. R. (2023). Walmart Data Analysis Using Machine Learning. International Journal of Computer Research and Technology (IJCRT), 11(7).
Venkatesan, R. (2017). Executing on a customer engagement strategy. Journal of the Academy of Marketing Science, 45, 289-293. DOI: https://doi.org/10.1007/s11747-016-0513-6
Guveyi, E., Aktas, M. S., & Kalipsiz, O. (2020). Human factor on software quality: A systematic literature review. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, C. M. Torre, & Y. Karaca (Eds.), Computational Science and Its Applications – ICCSA 2020. Lecture Notes in Computer Science (pp. 918–930). Springer. DOI: https://doi.org/10.1007/978-3-030-58811-3_65
Aktas, M. S., & Kapdan, M. (2016). Structural code clone detection methodology using software metrics. International Journal of Software Engineering and Knowledge Engineering, 26(2), 307–332. DOI: https://doi.org/10.1142/S0218194016500133
Oz, M., Kaya, C., Olmezogullari, E., & Aktas, M. S. (2021). On the use of generative deep learning approaches for generating hidden test scripts. International Journal of Software Engineering and Knowledge Engineering, 31(10), 1447–1468. DOI: https://doi.org/10.1142/S0218194021500480
Oguz, R.F., Oz, M., Olmezogullari, E., Aktas, M. S. (2022). Extracting Information from Large Scale Graph Data: Case Study on Automated UI Testing, Euro-Par 2021: Parallel Processing Workshops, LNCS,volume 13098. DOI: https://doi.org/10.1007/978-3-031-06156-1_29
Uzun-Per, M., Can, A. B., Gurel, A. V., & Aktas, M. S. (2021). Big data testing framework for recommendation systems in e-science and e-commerce domains. 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9672082
Erdem, I., Oguz, R. F., Olmezogullari, E., & Aktas, M. S. (2021). Test script generation based on hidden Markov models learning from user browsing behaviors 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9671312
Düzen, Z., & Aktas, M. S. (2016). An approach to hybrid personalized recommender systems. 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 2-5 Ağustos 2016, Sinaia, Romanya. DOI: https://doi.org/10.1109/INISTA.2016.7571865
Uzun-Per, M., Gurel, A. V., Can, A. B., & Aktas, M. S. (2022). Scalable recommendation systems based on finding similar items and sequences. Concurrency and Computation: Practice and Experience, 34(20). DOI: https://doi.org/10.1002/cpe.6841
Yildiz, B. (2022, September). Enhancing image resolution with generative adversarial networks. In 2022 7th International Conference on Computer Science and Engineering (UBMK) (pp. 104–109). IEEE. DOI: https://doi.org/10.1109/UBMK55850.2022.9919520
Yıldız, B. (2022). Efficient text classification with deep learning on imbalanced data improved with better distribution. Turkish Journal of Science and Technology, 17(1), 89–98. DOI: https://doi.org/10.55525/tjst.1068940
Briman, M. K. H., & Yildiz, B. (2024). Beyond ROUGE: A comprehensive evaluation metric for abstractive summarization leveraging similarity, entailment, and acceptability. International Journal on Artificial Intelligence Tools. DOI: https://doi.org/10.1142/S0218213024500179
Saad, A. M. S. E., & Yildiz, B. (2022, September). Reinforcement learning for intrusion detection. In International Conference on Computing, Intelligence and Data Analytics (pp. 230–243). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-27099-4_18
Haider, U., & Yildiz, B. (2023, December). A novel use of reinforcement learning for elevated click-through rate in online advertising. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 64–70). IEEE. DOI: https://doi.org/10.1109/CSCI62032.2023.00017
Yildiz, B. (2021). Optimizing bitmap index encoding for high performance queries. Concurrency and Computation: Practice and Experience, 33(18), e5943. DOI: https://doi.org/10.1002/cpe.5943
Yildiz, B., & Tezgider, M. (2020). Learning quality improved word embedding with assessment of hyperparameters. In Euro-Par 2019: Parallel Processing Workshops: Euro-Par 2019 International Workshops, Göttingen, Germany, August 26–30, 2019, Revised Selected Papers 25 (pp. 506–518). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-48340-1_39