AI-Driven Optimization of Order Procurement and Inventory Management in Supply Chains

Main Article Content

Gizem Yeldan
Gökçe Yılmaz
Gökhan Kayatürk

Abstract

This project focuses on the development of an advanced artificial intelligence-based system for optimizing order procurement and inventory management in supply chains. The system utilizes machine learning algorithms to analyze historical sales data, customer behavior, and market trends, enabling it to predict optimal procurement times and quantities for imported products. The primary objective is to reduce excess stock, prevent stockouts, and improve overall inventory turnover. By integrating features such as substitute product tracking, import forecasting, and truckload optimization, the system enhances decision-making processes and ensures efficient supply chain operations. Furthermore, the inclusion of real-time data for demand forecasting aims to improve the accuracy of predictions and adapt to dynamic market conditions. The project also envisions future advancements, including the incorporation of external factors like seasonal variations and promotional campaigns, as well as the automation of supply chain processes. Ultimately, the system aims to provide more accurate, data-driven insights for decision-making, leading to enhanced operational efficiency and a more responsive and resilient supply chain.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yeldan, G., Yılmaz, G., & Kayatürk, G. (2024). AI-Driven Optimization of Order Procurement and Inventory Management in Supply Chains. The European Journal of Research and Development, 4(3), 46–56. https://doi.org/10.56038/ejrnd.v4i3.605
Section
Articles

References

Shekhawat, S. (2023). Smart retail: How AI and IoT are revolutionising the retail industry. Journal of AI, Robotics & Workplace Automation, 2(2), 145-152. DOI: https://doi.org/10.69554/TCLG1264

Cox, A. (2001). Understanding buyer and supplier power: A framework for procurement and suppy competence. Journal of Supply Chain Management, 37(2), 8. DOI: https://doi.org/10.1111/j.1745-493X.2001.tb00094.x

Wieland, A. (2021). Dancing the supply chain: Toward transformative supply chain management. Journal of Supply Chain Management, 57(1), 58-73. DOI: https://doi.org/10.1111/jscm.12248

Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 108250. DOI: https://doi.org/10.1016/j.ijpe.2021.108250

Adamashvili, N., Zhizhilashvili, N., & Tricase, C. (2024). The integration of the internet of things, artificial intelligence, and blockchain technology for advancing the wine supply chain. Computers, 13(3), 72. DOI: https://doi.org/10.3390/computers13030072

Shoushtari, F., Ghafourian, E., & Talebi, M. (2021). Improving performance of supply chain by applying artificial intelligence. International journal of industrial engineering and operational research, 3(1), 14-23.

Harikrishnakumar, R., Dand, A., Nannapaneni, S., & Krishnan, K. (2019, December). Supervised machine learning approach for effective supplier classification. In 2019 18th ieee international conference on machine learning and applications (icmla) (pp. 240-245). IEEE. DOI: https://doi.org/10.1109/ICMLA.2019.00045

Rafiei Oskooei, A., Yahsi, E., Sungur, M., & S. Aktas, M. (2024, July). Can One Model Fit All? An Exploration of Wav2Lip’s Lip-Syncing Generalizability Across Culturally Distinct Languages. In International Conference on Computational Science and Its Applications (pp. 149-164). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-65282-0_10

Gustafson-Pearce, O., & Grant, S. B. (2017). Supply chain learning using a 3D virtual world environment. In Sustainable Design and Manufacturing 2017: Selected papers on Sustainable Design and Manufacturing 4 (pp. 386-397). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-57078-5_37

Lingam, Y. K. (2018). The role of Artificial Intelligence (AI) in making accurate stock decisions in E-commerce industry. Int. J. Adv. Res. Ideas Innov. Technol, 4(3), 2281-2286.

Cui, R., Li, M., & Zhang, S. (2022). AI and procurement. Manufacturing & Service Operations Management, 24(2), 691-706. DOI: https://doi.org/10.1287/msom.2021.0989

Loske, D., & Klumpp, M. (2021). Intelligent and efficient? An empirical analysis of human–AI collaboration for truck drivers in retail logistics. The International Journal of Logistics Management, 32(4), 1356-1383. DOI: https://doi.org/10.1108/IJLM-03-2020-0149

Chang, Y. S., & Lee, H. J. (2018). Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Systems with Applications, 104, 307-317. DOI: https://doi.org/10.1016/j.eswa.2018.03.032

Guveyi, E., Aktas, M. S., & Kalipsiz, O. (2020). Human factor on software quality: A systematic literature review. In O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, C. M. Torre, & Y. Karaca (Eds.), Computational Science and Its Applications – ICCSA 2020. Lecture Notes in Computer Science (pp. 918–930). Springer. DOI: https://doi.org/10.1007/978-3-030-58811-3_65

Aktas, M. S., & Kapdan, M. (2016). Structural code clone detection methodology using software metrics. International Journal of Software Engineering and Knowledge Engineering, 26(2), 307–332. DOI: https://doi.org/10.1142/S0218194016500133

Oz, M., Kaya, C., Olmezogullari, E., & Aktas, M. S. (2021). On the use of generative deep learning approaches for generating hidden test scripts. International Journal of Software Engineering and Knowledge Engineering, 31(10), 1447–1468. DOI: https://doi.org/10.1142/S0218194021500480

Oguz, R.F., Oz, M., Olmezogullari, E., Aktas, M. S. (2022). Extracting Information from Large Scale Graph Data: Case Study on Automated UI Testing, Euro-Par 2021: Parallel Processing Workshops, LNCS,volume 13098. DOI: https://doi.org/10.1007/978-3-031-06156-1_29

Uzun-Per, M., Can, A. B., Gurel, A. V., & Aktas, M. S. (2021). Big data testing framework for recommendation systems in e-science and e-commerce domains. 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9672082

Erdem, I., Oguz, R. F., Olmezogullari, E., & Aktas, M. S. (2021). Test script generation based on hidden Markov models learning from user browsing behaviors 2021 IEEE International Conference on Big Data (Big Data), 2021. DOI: https://doi.org/10.1109/BigData52589.2021.9671312

Düzen, Z., & Aktas, M. S. (2016). An approach to hybrid personalized recommender systems. 2016 International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), 2-5 Ağustos 2016, Sinaia, Romanya. DOI: https://doi.org/10.1109/INISTA.2016.7571865

Uzun-Per, M., Gurel, A. V., Can, A. B., & Aktas, M. S. (2022). Scalable recommendation systems based on finding similar items and sequences. Concurrency and Computation: Practice and Experience, 34(20). DOI: https://doi.org/10.1002/cpe.6841

Yildiz, B. (2022, September). Enhancing image resolution with generative adversarial networks. In 2022 7th International Conference on Computer Science and Engineering (UBMK) (pp. 104–109). IEEE. DOI: https://doi.org/10.1109/UBMK55850.2022.9919520

Yıldız, B. (2022). Efficient text classification with deep learning on imbalanced data improved with better distribution. Turkish Journal of Science and Technology, 17(1), 89–98. DOI: https://doi.org/10.55525/tjst.1068940

Briman, M. K. H., & Yildiz, B. (2024). Beyond ROUGE: A comprehensive evaluation metric for abstractive summarization leveraging similarity, entailment, and acceptability. International Journal on Artificial Intelligence Tools. DOI: https://doi.org/10.1142/S0218213024500179

Saad, A. M. S. E., & Yildiz, B. (2022, September). Reinforcement learning for intrusion detection. In International Conference on Computing, Intelligence and Data Analytics (pp. 230–243). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-27099-4_18

Haider, U., & Yildiz, B. (2023, December). A novel use of reinforcement learning for elevated click-through rate in online advertising. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 64–70). IEEE. DOI: https://doi.org/10.1109/CSCI62032.2023.00017

Yildiz, B. (2021). Optimizing bitmap index encoding for high performance queries. Concurrency and Computation: Practice and Experience, 33(18), e5943. DOI: https://doi.org/10.1002/cpe.5943

Yildiz, B., & Tezgider, M. (2020). Learning quality improved word embedding with assessment of hyperparameters. In Euro-Par 2019: Parallel Processing Workshops: Euro-Par 2019 International Workshops, Göttingen, Germany, August 26–30, 2019, Revised Selected Papers 25 (pp. 506–518). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-48340-1_39