Production of Sodium Hypochlorite by Electrochemical Methods: Development of New Generation Electrodes

Main Article Content

Gökhan Ceyhan
Ebru Çalışkan
Orhan Işık

Abstract

In the denim sector, the difficulty in the supply of sodium hypochlorite used in the washing processes where bleaching and bleaching processes are carried out and the hydrogen peroxide chemicals required for neutralization have become an important problem in the global market and their costs have increased. In addition, green chemistry and sustainable synthesis reactions are attracting attention in today's world where environmental concerns have reached the highest level. Electrochemical techniques, one of them, are generally used in treatment and disinfectant production. Industrially, the synthesis of sodium hypochlorite is carried out with chemicals and processes that are harmful to the environment. In this study, the synthesis of sodium hypochlorite, which is a bleaching and bleaching chemical used in various fields in denim production lines, as a cost-effective, environmentally friendly and sustainable green chemistry was carried out using electrochemical techniques with brine.  Thanks to the new generation electrode and electrochemical cell design prepared using Mn (III) imprinted 402 grade steel, sodium hypochlorite production efficiency was improved by 40%. The bleaching and effecting results were compared with the conventional ones and found to be more effective.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ceyhan, G., Çalışkan, E., & Işık, O. (2024). Production of Sodium Hypochlorite by Electrochemical Methods: Development of New Generation Electrodes . The European Journal of Research and Development, 4(4), 165–177. https://doi.org/10.56038/ejrnd.v4i4.530
Section
Articles

References

Renewable, Speciality and Fine Chemicals. (2021). Sodium hypochlorite market size, share, competitive landscape and trend analysis report, by application: Global opportunity analysis and industry forecast, 2021–2030, 71, 167.

Budavari, S., O'Neil, M., Smith, A., Heckelman, P., & Obenchain, J. (1996). Sodium hypochlorite. In The Merck Index (p. 1478).

Hamano, A. (1997). The formation and decomposition of sodium hypochlorite anhydrous salt and its pentahydrate. Science and Technology of Energetic Materials, 58(4), 152–155.

Urben, P. (2006). Bretherick's Handbook of Reactive Chemical Hazards (7th ed., Vol. 1, p. 1433). Elsevier.

Applebey, M. P. (2009). Sodium hypochlorite. Journal of the Chemical Society, Transactions, 115(96), 1106–1109. DOI: https://doi.org/10.1039/CT9191501106

Henwood, A. F. (2020). Coronavirus disinfection in histopathology. Journal of Histotechnology, 43, 102–104. DOI: https://doi.org/10.1080/01478885.2020.1734718

Al-Hazmi, H. E., Shokrani, H., Shokrani, A., Jabbour, K., Abida, O., Khadem, S. S. M., ... Bonilla-Petriciolet, A. (2022). Recent advances in aqueous virus removal technologies. Chemosphere, 305, 135441. DOI: https://doi.org/10.1016/j.chemosphere.2022.135441

Slaughter, R. J., Watts, M., Vale, J. A., Grieve, J. R., & Schep, L. J. (2019). The clinical toxicology of sodium hypochlorite. Clinical Toxicology, 57, 303–311. DOI: https://doi.org/10.1080/15563650.2018.1543889

Burton, N. C., Adhikari, A., Iossifova, Y., Grinshpun, S. A., & Reponen, T. (2008). Effect of gaseous chlorine dioxide on indoor microbial contaminants. Journal of the Air & Waste Management Association, 58(5), 647–656. DOI: https://doi.org/10.3155/1047-3289.58.5.647

U.S. Environmental Protection Agency (US EPA). (2022, March 28). About list N: Disinfectants for coronavirus (COVID-19).

Afify, A. A., Hassan, G. K., Al-Hazmi, H. E., Kamal, R. M., Mohamed, R. M., Drewnowski, J., ... El-Gawad, H. A. (2023). Electrochemical production of sodium hypochlorite from salty wastewater using a flow-by porous graphite electrode. Energies, 16, 4754. DOI: https://doi.org/10.3390/en16124754

Trainham, J. A., Newman, J. (1981). A comparison between flow-through and flow-by porous electrodes for redox energy storage. Electrochimica Acta, 26, 455–469. DOI: https://doi.org/10.1016/0013-4686(81)87024-7

Abdel-Monem, N. M., Abdel-Salam, O. E., Nassar, A. F., & Mahmoud, M. H. (2013). Oxidation of urea in human urine using flow-by porous graphite electrode. International Journal of Scientific & Engineering Research, 4, 1715–1723.

Pathak, A., Sharma, A. K., & Gupta, A. K. (2021). Dimensional analysis of a flow-by porous electrode and demonstration to all-vanadium redox flow batteries thereon. Journal of Energy Storage, 44, 103258. DOI: https://doi.org/10.1016/j.est.2021.103258

Ding, T., Xuan, X.-T., Li, J., Chen, S.-G., Liu, D.-H., Ye, X.-Q., et al. (2016). Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control, 60, 505–510. DOI: https://doi.org/10.1016/j.foodcont.2015.08.037

Dalrymple, O., Stefanakos, E., Trotz, M., & Goswami, D. (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental, 98(1–2), 27–38. DOI: https://doi.org/10.1016/j.apcatb.2010.05.001

Cho, M., Kim, J., Kim, J. Y., Yoon, J., & Kim, J. H. (2010). Mechanisms of Escherichia coli inactivation by several disinfectants. Water Research, 44(11), 3410–3418. DOI: https://doi.org/10.1016/j.watres.2010.03.017

Whitcombe, M. J., Kirsch, N., & Nicholls, I. A. (2014). Molecular recognition using imprinted polymers. Journal of Molecular Recognition, 27, 297–401. DOI: https://doi.org/10.1002/jmr.2347

Lofgreen, J. E., & Ozin, G. A. (2014). Chemically functionalized nanoporous materials for water purification. Chemical Society Reviews, 43, 911–933. DOI: https://doi.org/10.1039/C3CS60276A

Alexander, C., Andersson, H. S., Andersson, L. I., Ansell, R. J., Kirsch, N., Nicholls, I. A., O’Mahony, J., & Whitcombe, M. J. (2006). Molecularly imprinted polymers for use in chemical sensors. Journal of Molecular Recognition, 19, 106–180. DOI: https://doi.org/10.1002/jmr.760

Wulff, G., Vesper, W., Grobe-Einsler, R., & Sarhan, A. (1977). Enzyme-like catalysis by molecularly imprinted polymers. Makromolecular Chemistry, 178, 2799–2816. DOI: https://doi.org/10.1002/macp.1977.021781004

Kostrewa, S., Emgenbroich, M., Klockow, D., & Wulff, G. (2003). Molecularly imprinted polymers for bioanalytical applications. Macromolecular Chemistry and Physics, 204, 481–487. DOI: https://doi.org/10.1002/macp.200390015

Kriz, D., Ramstrom, O., Svensson, A., & Mosbach, K. (1995). Molecular imprinting for chiral separations. Analytical Chemistry, 67, 2142–2144. DOI: https://doi.org/10.1021/ac00109a037

Diltemiz, S. E., Hur, D., Ersoz, A., Denizli, A., & Say, R. (2009). Biosensors based on molecularly imprinted polymers. Biosensors and Bioelectronics, 25, 599–603. DOI: https://doi.org/10.1016/j.bios.2009.01.032

Ozkutuk, E. B., Diltemiz, S. E., Ozalp, E., Say, R., & Ersoz, A. (2013). Molecularly imprinted polymer-based sensors for biomedical applications. Materials Science and Engineering: C, 33, 938–942. DOI: https://doi.org/10.1016/j.msec.2012.11.024

ISO/IEC. (2005). General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025).

Most read articles by the same author(s)