The Evaluation of Biological Activities of Exopolysaccharide from Rhodococcus pyridinivorans In vitro

Main Article Content

Nur Ceyhan Güvensen
Mehlika Alper
Aylin Taşkaya

Abstract

Microbial exopolysaccharides (EPSs) are biopolymers in the form of carbohydrates produced by many microorganisms and secreted into the external environment. EPS protects the microorganism from drying, phagocytosis, and phage effects, and acts as a barrier in stress environments such as heat, light and sound. EPSs produced for industrial purposes are generally used in areas such as food, cosmetics, petroleum and chemistry. This study was aimed to investigate in addition to basic physical and chemical properties of R. pyridinovorans EPS, in vitro its biological activities such as antioxidant properties and antiproliferative activity. The antioxidant properties of EPS were determined by DPPH and hydroxyl radical elimination. The antiproliferative activity of EPS on HT-29 and MCF-7 cell lines was determined by MTT assay. The results of study indicate that EPS from R. pyridinovorans have important biological activities. Further studies on structural and mechanism elucidation of the bacterial EPSs are still needed being carried out.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ceyhan Güvensen, N., Alper, M., & Taşkaya, A. (2022). The Evaluation of Biological Activities of Exopolysaccharide from Rhodococcus pyridinivorans In vitro . The European Journal of Research and Development, 2(2), 491–504. https://doi.org/10.56038/ejrnd.v2i2.46
Section
Articles

References

Bandyopadhyay-Ghosh, S., Ghosh S.B., Rodriguez, A., (2018). Biosynthesis, microstructural characterisations and investigation of in-vitro mutagenic and eco-toxicological response of a novel microbial exopolysaccharide based biopolymer, J. Polyn Environ (2018) 26:365-374. DOI: https://doi.org/10.1007/s10924-016-0925-x

Zhao, M., Cui, N., Qu, F., Huang, X., Yang, H., Nie, S., Zha, X., Cui S.W., Nishinari, K., Phillips, G.O., Fang, Y., (2017). Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers 171 (2017) 252-258. DOI: https://doi.org/10.1016/j.carbpol.2017.05.015

Xing, H., Du, R., Zhao, F., Han, Y., Xiao, H., Zhou, Z., (2018). Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105. International Journal of Biological Macromolecules 112 (2018) 1208-1216. DOI: https://doi.org/10.1016/j.ijbiomac.2018.02.068

Madhuri, K., Prabhakar, V. 2014. ‘‘Microbial exopolysaccharides: Biosynthesis and potential applications”, Oriental Journal of Chemistry, 30(3), 1401-1410. DOI: https://doi.org/10.13005/ojc/300362

Moscovici, M. (2015) Present and future medical applications of microbial exopolysaccharides, Front Microbiol, 6:1012. DOI: https://doi.org/10.3389/fmicb.2015.01012

Kranenburg, R.V., Boels, I.C., Kleerebezem, M. ve Vos, W.M. (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the productions of existing and novel polysaccharides, Curr Opin Bıotech, 10:498-504. DOI: https://doi.org/10.1016/S0958-1669(99)00017-8

Ergene, E. ve Avcı, A. (2016) Mikrobiyal ekzopolisakkaritler, SAÜ Fen Bil Der, 20: 193-202. DOI: https://doi.org/10.16984/saufenbilder.91974

Liu, L., Qin, T., Wang, Y., Li, H. ve Li, P. (2014) Complete genome sequence of Bifidobacterium animalis RH, a probiotic bacterium producing exopolysaccharides, J Biotechnol, 189:86-87. DOI: https://doi.org/10.1016/j.jbiotec.2014.08.041

Wu, J., Zhang, Y., Ye, L., & Wang, C. (2021). The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate polymers, 253, 117308. DOI: https://doi.org/10.1016/j.carbpol.2020.117308

Farag, M. M., Moghannem, S. A., Shehabeldine, A. M., & Azab, M. S. (2020). Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microbial Pathogenesis, 140, 103947. DOI: https://doi.org/10.1016/j.micpath.2019.103947

Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in bioengineering and biotechnology, 3, 200. DOI: https://doi.org/10.3389/fbioe.2015.00200

Banerjee, A., & Bandopadhyay, R. (2016). Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applications. International journal of biological macromolecules, 87, 295-301. DOI: https://doi.org/10.1016/j.ijbiomac.2016.02.059

Sun, M. L., Liu, S. B., Qiao, L. P., Chen, X. L., Pang, X., Shi, M., ... & Xie, B. B. (2014). A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Applied microbiology and biotechnology, 98(17), 7437-7445. DOI: https://doi.org/10.1007/s00253-014-5839-8

Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International journal of biological macromolecules, 94, 10-27. DOI: https://doi.org/10.1016/j.ijbiomac.2016.09.104

Banerjee, A., Rudra, S. G., Mazumder, K., Nigam, V., & Bandopadhyay, R. (2018). Structural and functional properties of exopolysaccharide excreted by a novel Bacillus anthracis (Strain PFAB2) of hot spring origin. Indian journal of microbiology, 58(1), 39-50. DOI: https://doi.org/10.1007/s12088-017-0699-4

Arena, A., Gugliandolo, C., Stassi, G., Pavone, B., Iannello, D., Bisignano, G., & Maugeri, T. L. (2009). An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunology letters, 123(2), 132-137. DOI: https://doi.org/10.1016/j.imlet.2009.03.001

Chen, Y. T., Yuan, Q., Shan, L. T., Lin, M. A., Cheng, D. Q., & Li, C. Y. (2013). Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncology letters, 5(6), 1787-1792. DOI: https://doi.org/10.3892/ol.2013.1284

Queiroz, E. A., Fortes, Z. B., da Cunha, M. A., Sarilmiser, H. K., Dekker, A. M. B., Öner, E. T., ... & Khaper, N. (2017). Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. International journal of biological macromolecules, 102, 565-570. DOI: https://doi.org/10.1016/j.ijbiomac.2017.04.035

Wang, J., Zhao, X., Yang, Y., Zhao, A. ve Yang, Z. (2015) Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32, Int J Biolo Macromol, 74: 119-126. DOI: https://doi.org/10.1016/j.ijbiomac.2014.12.006

Shimada, K., Fujikawa, K., Yahara, K. ve Nakamura, T. (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion, J Agr Food Chem, 40(6): 945-948. DOI: https://doi.org/10.1021/jf00018a005

Venkatesh, P., Balraj, M., Ayyanna, R., Ankaiah, D. ve Arul, V. (2016) Physicochemical and biosorption properties of novel exopolysaccharide produced by Enterococcus faecalis, LWT-Food Science and Technology, 68: 606-614. DOI: https://doi.org/10.1016/j.lwt.2016.01.005

Winterbourn, C.C. ve Button, H.C. (1984) Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence, Arch Biochem Biophys, 235(1): 116-126. DOI: https://doi.org/10.1016/0003-9861(84)90260-1

Mosmann, T. (1983) Rapid colorometric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods, 65: 55- 63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Gürleyendağ, B. (2006) Polisakkarit üreten ekstremofillerin belirlenmesi ve ekzopolisakkarit üretimi, Yüksek Lisans Tezi, Marmara Üniversitesi, İstanbul, 89.

Zhao, R., Gao, X., Cai, Y., Shao, X., Jia, G., Huang, Y., Zheng, X. (2013). Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydrate polymers, 96(2), 376-383. DOI: https://doi.org/10.1016/j.carbpol.2013.04.023

Selim, M. S., Amer, S. K., Mohamed, S. S., Mounier, M. M., & Rifaat, H. M. (2018). Production and characterisation of exopolysaccharide from Streptomyces carpaticus isolated from marine sediments in Egypt and its effect on breast and colon cell lines. Journal of Genetic Engineering and Biotechnology, 16(1), 23-28. DOI: https://doi.org/10.1016/j.jgeb.2017.10.014

Di, W., Zhang, L., Yi, H., Han, X., Zhang, Y., & Xin, L. (2018). Exopolysaccharides produced by Lactobacillus strains suppress HT‑29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis. Oncology letters, 16(3), 3577-3586. DOI: https://doi.org/10.3892/ol.2018.9129

Güvensen, C. N., Erdoğdu, T., Alper, M., & Güneş, H. (2018). Evaluation of antibiofilm and cytotoxic potential of exopolysaccharides from ZZ40 Enterobacter sp. and ZZ47 Rhodococcus pyridinovorans strains. Kastamonu Üniversitesi International Ecology 2018 Symposium, 519.