Studies on Production of Low-Cost Ceramic Membranes and Their Uses in Wastewater Treatment Processes

Main Article Content

Gülzade Artun
Ayşegül AŞKIN


The need for water is increasing owing to the rapidly increasing world population, urbanization, industrialization, global climate changes, and intensive agricultural activities. While the importance of water is increasing day by day, the purification and reuse of water have become more and more essential. Reducing the pollutants at the source as much as possible and if it will be given to the receiving environment, giving the wastewater treatment in accordance with the current discharge regulations, are priority processes. Of the advanced separation methods, membrane separation technology is used to reduce water resource use and control environmental pollution and has advantages such as high separation efficiency, convenient operation, compact equipment, and energy-saving. Membranes are divided into two categories according to their structures: organic and inorganic membranes (or ceramic membranes). Compared to organic membranes, inorganic membranes have many advantages such as high thermal and chemical stability, good resistance to microbial erosion, easy regeneration and cleaning, high mechanical strength, and long-term stability in harsh conditions. The high cost of ceramic membranes is an important disadvantage. In recent years, it is seen that membrane production costs are reduced by using natural minerals such as kaolin, quartz, bauxite, diatomite, clay, limestone, dolomite, zeolite, and industrial wastes instead of the commonly used ceramic membrane raw materials. By using these raw materials, besides reducing the cost of ceramic membranes, it also contributes to lowering the temperatures required for their production. In this study, studies on ceramic membranes produced from industrial wastes (waste ash, sawdust, sewage sludge, construction and demolition wastes, waste diatomite, rice husk ash, sugarcane pulp ash, corn cob ash waste etc.) were examined.


Download data is not yet available.

Article Details

How to Cite
Artun, G., & AŞKIN, A. (2022). Studies on Production of Low-Cost Ceramic Membranes and Their Uses in Wastewater Treatment Processes. The European Journal of Research and Development, 2(2), 126–140.
Author Biographies

Gülzade Artun, Eskisehir Osmangazi University

Chemical Engeering Departmant

Ayşegül AŞKIN, Eskisehir Osmangazi University

Chemical Engineering Department


Abbasi, M., Salahi, A., Mirfendereski, M., Mohammadi, T., & Pak, A. (2010). Dimensional analysis of permeation flux for microfiltration of oily wastewaters using mullite ceramic membranes. Desalination, 252, 113-119. DOI:

Abdallah, H., Amin, S.K., Abo-Almaged, H.H., & Abadir, M,F. (2018). Fabrication of ceramic membranes from nano–rosette structure high alumina roller kiln waste powder for desalination application. Ceramics International, 44, 8612-8622. DOI:

Abdullayev, A., Bekheet , M.F., Hanaor , D.A.H., & Gurlo, A. (2019). Materials and Applications for Low-Cost Ceramic Membranes. Membranes, 9 (105), 1-15. DOI:

Agarwal, A., Samanta, A., Nandi, B.K. & Mandal, A. (2020). Synthesis, characterization and performance studies of kaolin-fly ash-based membranes for microfiltration of oily wastewater. Journal of Petroleum Science and Engineering, 194, 1-15. DOI:

Alterary, S.S., & Marei, N. (2021). Fly ash properties, characterization, and applications: A review. Journal of King Saud University – Science, 33 (101536), 1-8. DOI:

Amin, S.K., Abdallah, H, A, M., Roushdy, M.H., & El-Sherbiny. (2016). An Overview of Production and Development of Ceramic Membranes. International Journal of Applied Engineering Research, 11 (12), 7708-7721.

Amin, S.K., Rosuhdy, M.H., El-Sherbiny, S.A., Abdallah, H.A.M., & Abadir, M.F. (2022). Preparation of Nano-Size Ceramic Membrane from Industrial Waste. International Journal of Applied Engineering Research, 11(10), 7176-7186.

Andrade, R.M., Jaques, N.G., Sousa, J., Dutra, R.P.S., Macedo, D.A., & Campos, L.F.A. (2019). Preparation of low-cost ceramic membranes for microfiltration using sugarcane bagasse ash as a pore-forming agent. Cerâmica, 65, 620-625. DOI:

Apriyanti, E., Susanto, H. & Widiasa, N. (2021). Development of Fly Ash Coal/TiO2 Pored Composite Materials in The Making of Ceramic Membrane for Water Treatment Process. Incitest, 1158, 1-6. DOI:

Arumugham, T., Kaleekkal, N.J., Gopal, S., Nambikkattu, J., & Aboulella, A.M., Wickramasinghe, R., Banat, F. (2021). Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. Journal of Environmental Management, 293, 1-14. DOI:

Aşkın, A., Tatar, İ., Kılınç, Ş., & Tezel, Ö. (2017). The Utilization of Waste Magnesite in The Production of the Cordierite Ceramic. Energy Procedia, 107, 137-143. DOI:

Azaman, F., Nor, M.A.A.M., Rafizah, W., Abdullah, W.R.A., Razali, M.H., Zulkifli, R.C., Zaini, M.A.A., & Ali, A. (2021). Review on natural clay ceramic membrane: Fabrication and application in water and wastewater treatment. Malaysian Journal of Fundamental and Applied Sciences, 17 (1), 62-78. DOI:

Bejjaoui, R., Benhammou, A., Nibou, L., Tanouti, B., Bonnet, J.P., Yaacoubi, A., & Ammar, A. (2010). Synthesis and Characterization of Cordierite Ceramic From Moroccan Stevensite and Andalusite. Applied Clay Science, 49, 336-340. DOI:

Bose, S., & Das, C. (2015). Sawdust: From Wood Waste to Pore-Former in The Fabrication Of Ceramic Membrane. Ceramics International, 41, 4070-4079. DOI:

Brito, I.P., Almeida, E.P., Neves, G.A., Lira, H.L., Menezes, R.R, Silva, V.J., & Santana, L.N.L. (2021). Development of Cordierite/Mullite Composites Using Industrial Wastes,. International Journal of Applied Ceramic Technology, 18, 253-261. DOI:

Cao, J., Dong., X., Li., L., Dong, Y., & Hampshire, S. (2014). Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity. Journal of the European Ceramic Society, 34, 3181-3194. DOI:

Chen, M., Zhu, L., Dong., Y., Li., L., & Liu, J. (2016). Waste-to-Resource Strategy To Fabricate Highly Porous WhiskerStructured Mullite Ceramic Membrane for Simulated Oil-in-Water Emulsion Wastewater Treatment. ACS Sustainable Chemistry and Engineering, 4, 2098-2106. DOI:

Das, D., Kayal, N., Marsola, G.A., Filho, D.G.P.F., & Innicentini, M.D.D.M. (2020). Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration. Journal of the European Ceramic Society, 40, 2163-2172. DOI:

Diana, S., Fauzan, R., Arahman, N., Razi, F. & Bilad, M.R. . (2020). Synthesis and Characterization of Ceramic Membrane from Fly Ash and Clay Prepared by Sintering Method at Low Temperature. Rasāyan Journal of Chemistry, 13 (3), 1335-1341. DOI:

Dong., Y., Liu, X., Ma, Q., & Meng, G. (2006). Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials. Journal of Membrane Science, 285, 173-181. DOI:

Dong, Y., Zhou, J., Lin, B., Wang, Y.W., Wang, S., Miao, L., Langa, Y., Liu, X., & Meng, G. (2009). Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. Journal of Hazardous Materials, 172, 180-186. DOI:

Dung, T.T.N., Nam, V.N., Nhan, T.T., Hoang, B.N., Hung, D.L.T., & Quang, D.V. (2021). Utilization of Rice Husk, an Abundant and Inexpensive Biomass in Porous Ceramic Membrane Preparation: A Crucial Role of Firing Temperature. Hindawi Journal of Nanomaterials, 2021, 1-7. DOI:

El Maugana, Y., Elhadiri, N., Benchanaa, M., Chikri, R., Idouhli, R., & Tabit, K. (2022). Low-cost and high-performance ceramic membrane from sugar industry waste: Characterization and optimization using experimental design. Materials Today: Proceedings, 53, 310-317. DOI:

Fan, W., Zou, D., Xu, J., Chen, X., Qiu, M. & Fan, Y. (2021). Enhanced Performance of Fly Ash-Based Supports for Low-Cost Ceramic Membranes with the Addition of Bauxite. Membranes, 11 (711), 1-14. DOI:

Fu, M., Liu, J., Dng, X., Zhu, L., Dong., Y., & Hampshired, S. (2019). Waste recycling of coal fly ash for design of highly porous whiskerstructured mullite ceramic membranes. Journal of the European Ceramic Society, 39, 5320-5331. DOI:

Goswami, K.P., Pakshirajan, & K., Pugazhenthi., G. (2022). Process intensification through waste fly ash conversion and application as ceramic membranes: A review. Science of the Total Environment, 808, 1-20. DOI:

Hatimi, B., Loudiki, J.M.A., Hafdia, H., Joudi, M., Daoudi, E.M., Nasrellah, H., Lançar, L.T., Mhammedib, M.A.E., & Bakasse, M. (2020). Low-cost pyrrhotite ash/clay-based inorganic membrane for industrialwastewaters treatment,. Journal of Environmental Chemical Engineering, 8, 1-11. DOI:

He., Z., Lyu, Z., Gu, Q., Zhang., L., & Wang, J. 2019. Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A, 578,1-19. DOI:

Hossain, S.S. & Roy, P.K. (2020). Sustainable ceramics derived from solid wastes: a review. Journal Of Asian Ceramic Societies, 8 (4), 984-1009. DOI:

Hubadillah, S.K.H., Othman, M.H.D., Harun, Z., Ismail, A.F., Rahman, M.A. & Jaafar, J. (2017). A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceramics International, 43, 4716-4720. DOI:

Hubadillah, S.K.H., Othman, M.H.D., Ismail, A.F., Rahman, M.A., Jaafar, J., Iwamoto, Y., Honda,S., Dzahir, M.I.H.M., & Yusop, M.Z.M. (2018). Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceramics International, 44, 10498-10509. DOI:

Jamalludin, M.R., Hubadillah, S.K., Harun, Z., Othman, M.H.D., & Yunos, M.Z. (2019). Novel superhydrophobic and superoleophilic sugarcane green ceramic hollow fibre membrane as hybrid oil sorbent-separator of real oil and water mixture. Materials Letters, 240, 136 -139. DOI:

Jedidi, I., Khemakhema, S., Saïdia, S., Larbot, A., Elloumi-Ammar, N., Fourati, A., Charfi, A., Salah, A.B., & Amar, R.B. (2011). Preparation of a new ceramic microfiltration membrane from mineral coal fly ash: Application to the treatment of the textile dying effluents. Powder Technology, 208, 427-432. DOI:

Jeong, Y., Lee, S., Hong, S., & Park, C. (2017). Preparation, characterization and application of low-cost pyrophyllite alumina composite ceramic membranes for treating low-strength domestic wastewater. . Journal of Membrane Science, 536, 108-115. DOI:

Kamarudin, N.H., Harun., Z., Othman, M.H.D, Abdullah, T., Bahri, S.S., Kamarudin, N.H., Yunos, M.Z., & Salleh., W.N.W.S. (2020). Waste environmental sources of metakaolin and corn cob ash for preparation and characterization of green ceramic hollow fiber membrane (h-MCa) for oil-water separation. Ceramics International, 46, 1512-1525. DOI:

Liu, J., Dong, Y.D., Dong, X., Hampshire, S., Zhu, L., Zhu Z., & Li, L. (2016). Feasible recycling of industrial waste coal fly ash for preparation of anorthite-cordierite based porous ceramic membrane supports with addition of dolomite. Journal of the European Ceramic Society, 36, 1059-1071. DOI:

Lorente-Ayza, Mestre, S., Sanz, V., & Sánchez, E. (2016). On the underestimated effect of the starch ash on the characteristics of low cost ceramic membranes. Ceramics International, 42, 18944-18954. DOI:

Misrar, W., Loutou, M., Saadi, L., Mansori, M., Waqif, M., & Favotto, C. (2017). Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents. Journal of Asian Ceramic Societies, 5, 199-208. DOI:

Namaghi, H.A., Asl, A.H., Chenar, M.P., Hesampour, M., Pihlajamaki, A., & Mänttari, M. (2019). Performance enhancement of thin‐film composite membranes in water desalination process by wood sawdust. Polymers Advanced Technologies, 30, 2802-2818. DOI:

Nishihora, R.K., Rachadel, R.L., Quadri, M.G.N., & Hotza, D. (2018). Manufacturing porous ceramic materials by tape casting—A review. Journal of the European Ceramic Society, 38 (4), 988-1001. DOI:

Rani S.L.S., & Kumar, R.V. (2021). Insights on applications of low-cost ceramic membranes in wastewater treatment: A mini-review. Case Studies in Chemical and Environmental Engineering, 4, 1-11. DOI:

Samaei, S.M., Trinidad., & Altee, A. (2018). The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Separation and Purification Technology, 200, 198-220. DOI:

Tai, Z.S., Othman, M, H, D., Mustafa., A., Dzahir, M, I,H,M., Hubadillah, S.K., Koo, K.N., Azali, M.A., Alias, N.H., Mustafa, A., Ooi, B.S., Kurniawan, T.A., & Ismail,A.F. (2021). Design and fabrication of ceramic hollow fiber membrane derived from waste ash using phase inversion-based extrusion/sintering technique for water filtration. Journal Of Asian Ceramic Societies, 9 (1), 341-358. DOI:

Teng, H.D., Wei, Q., Wang, Y.L., Cui, S.P., Li, Q.Y. & Nie, Z.R. (2020). Asymmetric porous cordierite ceramic membranes prepared by phase inversion tape casting and their desalination performance. Ceramics International, 46, 23677-23685. DOI:

Thomaidis., E., & Kostakis, G. (2015). Synthesis of cordierite materials using raw kaolin, bauxite, serpentinite/olivinite and magnesite. Ceramics International, 41, 9701-9707. DOI:

Wang, S., Ma, X.Y., Wang., Y.L., Cui, S.P., Nie, Z.R., & Li, Q.Y. (2019). Preparation and desalination performance of porous planar cordierite membranes using industrial solid waste as main silica source. Ceramics International, 45, 5932-5940. DOI:

Wei, Z., Hou, J., & Zhu, Z. (2016). High-aluminum fly ash recycling for fabrication of cost-effective ceramic membrane supports. Journal of Alloys and Compounds, 683, 474-480. DOI:

Yoleva, A., Djambazov, S., Sabrieva, S., & Gigova, A. (2020). Study on the Preparation of Ceramic Membranes Based on Natural and Waste Materials. Journal of Chemical Technology and Metallurgy, 55 (2), 367-371.

Zhou, J., Dong., Y., Hampshire, S., & Meng, G.. (2011). Utilization of sepiolite in the synthesis of porous cordierite ceramics. Applied Clay Science, 52, 328-332. DOI:

Zou, D., Chen, X., Drioli, E., Qiu, M., & Fan, Y. (2019). Facile Mixing Process to Fabricate Fly-Ash-Enhanced Alumina-Based Membrane Supports for Industrial Microfiltration Applications. Industrial & Engineering Chemistry Research, 58, 8712-8723. DOI:

Zulkifli, S.N.A., Mustafa, A., Othman, M.H., & Hubadillah, S.K. (2019). Characteristic properties of ceramic membrane derived from fly ash with different loadings and sintering temperature. Malaysian Journal of Fundamental and Applied Sciences, 15 (3), 414-420. DOI: