Numerical Simulation of Granular Flow in Concrete Batching Plant via Discrete Element Method

Main Article Content

Jaber Salamat
https://orcid.org/0000-0003-0491-745X
Bülent Genç
https://orcid.org/0000-0001-9328-1339

Abstract

A new giant concrete batching plant with the production capacity of 270m3/hr was designed, analyzed and fabricated. In this concrete batching plant, the granular materials used for high-quality products must be uniformly mixed to attain a homogenous mixture. For this, the discrete element method (DEM) was utilized to simulate the filling, mixing, and discharging processes. The Hertz-Mindlin, elastic-plastic spring-dashpot and Simplified Johnson-Kendall-Roberts (SJKR) models were used for the interaction rules among granular particles. In the light of the aforementioned models, the first simulation with different particle sizes and the second simulation with monosized particles were realized. In the first simulation, the segregation by percolation and momentum segregation were perceived during the bunker filling stage, as well as the seeded granulation, which occurred in the mixer when the radii of particles were not monosized. Furthermore, in the second simulation, convective, diffusive and shear mixing mechanisms were observed and consequently the quantification of the mixing index was calculated using the lacey and miles statistical methods. At last, the active regions formed in the mixer were investigated by taking the velocity of the particles as reference during the mixing stages as well as the mixture throughput from the transfer chute.

Downloads

Download data is not yet available.

Article Details

How to Cite
Salamat, J., & Genç, B. (2023). Numerical Simulation of Granular Flow in Concrete Batching Plant via Discrete Element Method . The European Journal of Research and Development, 3(2), 11–28. https://doi.org/10.56038/ejrnd.v3i2.219
Section
Articles
Author Biography

Bülent Genç, Elkon Concrete Batching Plants, R&D Center, Tekirdağ, Türkiye

Factory Manager

References

Paul, E. L., Atiemo-Obeng, V. A., & Kresta, S. M. (2004). Handbook of Industrial Mixing. John Wiley & Sons. DOI: https://doi.org/10.1002/0471451452

Hassanpour, A., Tan, H., Bayly, A., Gopalkrishnan, P., Ng, B., & Ghadiri, M. (2011). Analysis of particle motion in a paddle mixer using Discrete Element Method (DEM). Powder Technology, 1–2, 189–194. https://doi.org/10.1016/j.powtec.2010.07.025 DOI: https://doi.org/10.1016/j.powtec.2010.07.025

Xia, R., Wang, X., Li, B., Wei, X., & Yang, Z. (2019). Discrete Element Method- (DEM-) Based Study on the Wear Mechanism and Wear Regularity in Scraper Conveyor Chutes. Mathematical Problems in Engineering, 1–12. https://doi.org/10.1155/2019/4191570 DOI: https://doi.org/10.1155/2019/4191570

Schmelzle, S., & Nirschl, H. (2018). DEM simulations: mixing of dry and wet granular material with different contact angles. Granular Matter, 2. https://doi.org/10.1007/s10035-018-0792-3 DOI: https://doi.org/10.1007/s10035-018-0792-3

Bertrand, F., Leclaire, L.-A., & Levecque, G. (2005). DEM-based models for the mixing of granular materials. Chemical Engineering Science, 8–9, 2517–2531. https://doi.org/10.1016/j.ces.2004.11.048 DOI: https://doi.org/10.1016/j.ces.2004.11.048

Abouzeid, A.-Z. M., & Fuerstenau, D. W. (2010). Mixing–demixing of particulate solids in rotating drums. International Journal of Mineral Processing, 1–4, 40–46. https://doi.org/10.1016/j.minpro.2010.03.006 DOI: https://doi.org/10.1016/j.minpro.2010.03.006

Alian, M., Ein-Mozaffari, F., Upreti, S. R., & Wu, J. (2015). Using discrete element method to analyze the mixing of the solid particles in a slant cone mixer. Chemical Engineering Research and Design, 318–329. https://doi.org/10.1016/j.cherd.2014.07.003 DOI: https://doi.org/10.1016/j.cherd.2014.07.003

Lu, L.-S., & Hsiau, S.-S. (2008). Mixing in a vibrated granular bed: Diffusive and convective effects. Powder Technology, 1, 31–43. https://doi.org/10.1016/j.powtec.2007.07.036 DOI: https://doi.org/10.1016/j.powtec.2007.07.036

Sinnott, M. D., & Cleary, P. W. (2015). The effect of particle shape on mixing in a high shear mixer. Computational Particle Mechanics, 4, 477–504. https://doi.org/10.1007/s40571-015-0065-4 DOI: https://doi.org/10.1007/s40571-015-0065-4

Sato, Y., Nakamura, H., & Watano, S. (2008). Numerical analysis of agitation torque and particle motion in a high shear mixer. Powder Technology, 2, 130–136. https://doi.org/10.1016/j.powtec.2007.11.028 DOI: https://doi.org/10.1016/j.powtec.2007.11.028

Hlosta, J., Jezerská, L., Rozbroj, J., Žurovec, D., Nečas, J., & Zegzulka, J. (2020). DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 2—Process Validation and Experimental Study. Processes, 2, 184. https://doi.org/10.3390/pr8020184 DOI: https://doi.org/10.3390/pr8020184

Moakher, M., Shinbrot, T., & Muzzio, F. J. (2000). Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology, 1–3, 58–71. https://doi.org/10.1016/s0032-5910(99)00227-2 DOI: https://doi.org/10.1016/S0032-5910(99)00227-2

Washino, K., Chan, E. L., Miyazaki, K., Tsuji, T., & Tanaka, T. (2016). Time step criteria in DEM simulation of wet particles in viscosity dominant systems. Powder Technology, 100–107. https://doi.org/10.1016/j.powtec.2016.08.018 DOI: https://doi.org/10.1016/j.powtec.2016.08.018

Norouzi, H. R., Zarghami, R., Sotudeh-Gharebagh, R., & Mostoufi, N. (2016). Coupled CFD-DEM Modeling. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119005315

TANG, P., & PURI, V. M. (2004). Methods for Minimizing Segregation: A Review. Particulate Science and Technology, 4, 321–337. https://doi.org/10.1080/02726350490501420 DOI: https://doi.org/10.1080/02726350490501420

Kim, K.-M., Bae, J.-H., Park, J.-I., & Han, J.-W. (2019). Segregation Charging Behavior of Ultra-Fine Iron Ore Briquette in Sinter Feed Bed: DEM Analysis. Metals and Materials International, 8, 1218–1225. https://doi.org/10.1007/s12540-019-00415-y DOI: https://doi.org/10.1007/s12540-019-00415-y

Ma, X., Zhang, Y., Ran, H., & Zhang, Q. (2016). Segregation simulation of binary granular matter under horizontal pendulum vibrations. International Journal of Modern Physics B, 30, 1650214. https://doi.org/10.1142/s0217979216502143 DOI: https://doi.org/10.1142/S0217979216502143

Rhodes, M. J. (2013). Introduction to Particle Technology. John Wiley & Sons.

LIGGGHTS, LAMMPS Improved for General Granular and Granular Heat Transfer Simulations Retrieved from http://www.cfdem.com

LAMMPS, LAMMPS User Manual, Sandia National Laboratories, USA. (Retrieved from http://lammps.sandia.gov/doc/Manual.html).

Mohanty, R., Mohanty, S., & Mishra, B. K. (2016). Study of flow through a packed bed using discrete element method and computational fluid dynamics. Journal of the Taiwan Institute of Chemical Engineers, 71–80. https://doi.org/10.1016/j.jtice.2016.03.025 DOI: https://doi.org/10.1016/j.jtice.2016.03.025

Komatsuzaki, T., & Iwata, Y. (2016). A combined approach for modeling particle behavior in granular impact damper using discrete element method and cellular automata. International Journal of Mechanics and Materials in Design, 3, 407–417. https://doi.org/10.1007/s10999-016-9344-3 DOI: https://doi.org/10.1007/s10999-016-9344-3

Cleary, P. W., & Prakash, M. (2004). Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1822, 2003–2030. https://doi.org/10.1098/rsta.2004.1428 DOI: https://doi.org/10.1098/rsta.2004.1428

Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 1, 47–65. https://doi.org/10.1680/geot.1979.29.1.47 DOI: https://doi.org/10.1680/geot.1979.29.1.47

Derakhshani, S. M., Schott, D. L., & Lodewijks, G. (2015). Micro–macro properties of quartz sand: Experimental investigation and DEM simulation. Powder Technology, 127–138. https://doi.org/10.1016/j.powtec.2014.08.072 DOI: https://doi.org/10.1016/j.powtec.2014.08.072

Smith, W., & Peng, H. (2013). Modeling of wheel–soil interaction over rough terrain using the discrete element method. Journal of Terramechanics, 5–6, 277–287. https://doi.org/10.1016/j.jterra.2013.09.002 DOI: https://doi.org/10.1016/j.jterra.2013.09.002

Iwashita, K., & Oda, M. (1998). Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM. Journal of Engineering Mechanics, 3, 285–292. https://doi.org/10.1061/(asce)0733-9399(1998)124:3(285) DOI: https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)

Malone, K. F., & Xu, B. H. (2008). Determination of contact parameters for discrete element method simulations of granular systems. Particuology, 6, 521–528. https://doi.org/10.1016/j.partic.2008.07.012 DOI: https://doi.org/10.1016/j.partic.2008.07.012

Li, T., Peng, Y., Zhu, Z., Zou, S., & Yin, Z. (2017a). Discrete Element Method Simulations of the Inter-Particle Contact Parameters for the Mono-Sized Iron Ore Particles. Materials, 5, 520. https://doi.org/10.3390/ma10050520 DOI: https://doi.org/10.3390/ma10050520

Kenneth Langstreth, J., Kendall, K., & A.D., R. (1971). Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1558, 301–313. https://doi.org/10.1098/rspa.1971.0141 DOI: https://doi.org/10.1098/rspa.1971.0141

Derjaguin, B. V., Muller, V. M., & Toporov, Yu. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 2, 314–326. https://doi.org/10.1016/0021-9797(75)90018-1 DOI: https://doi.org/10.1016/0021-9797(75)90018-1

Navarro, H. A., & de Souza Braun, M. P. (2013). Determination of the normal spring stiffness coefficient in the linear spring–dashpot contact model of discrete element method. Powder Technology, 707–722. https://doi.org/10.1016/j.powtec.2013.05.049 DOI: https://doi.org/10.1016/j.powtec.2013.05.049

Ucgul, M., Fielke, J. M., & Saunders, C. (2014). 3D DEM tillage simulation: Validation of a hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless soil. Soil and Tillage Research, 220–227. https://doi.org/10.1016/j.still.2013.10.003 DOI: https://doi.org/10.1016/j.still.2013.10.003

Thornton, C. (1997). Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres. Journal of Applied Mechanics, 2, 383–386. https://doi.org/10.1115/1.2787319 DOI: https://doi.org/10.1115/1.2787319

Hertz, H. (1882). Ueber die Berührung fester elastischer Körper. Crll, 92, 156–171. https://doi.org/10.1515/crll.1882.92.156 DOI: https://doi.org/10.1515/crll.1882.92.156

Chand, R., Khaskheli, M. A., Qadir, A., Ge, B., & Shi, Q. (2012). Discrete particle simulation of radial segregation in horizontally rotating drum: Effects of drum-length and non-rotating end-plates. Physica A: Statistical Mechanics and Its Applications, 20, 4590–4596. https://doi.org/10.1016/j.physa.2012.05.019 DOI: https://doi.org/10.1016/j.physa.2012.05.019

Walton, O. R. (n.d.). Potential Discrete Element Simulation Applications Ranging from Airborne Fines to Pellet Beds. SAE Transactions, 113, 471–483. https://doi.org/10.2307/44737907

Behjani, M. A., Rahmanian, N., Fardina bt Abdul Ghani, N., & Hassanpour, A. (2017). An investigation on process of seeded granulation in a continuous drum granulator using DEM. Advanced Powder Technology, 10, 2456–2464. https://doi.org/10.1016/j.apt.2017.02.011 DOI: https://doi.org/10.1016/j.apt.2017.02.011

O’Sullivan, C., & Bray, J. D. (2004). Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Engineering Computations, 2/3/4, 278–303. https://doi.org/10.1108/02644400410519794 DOI: https://doi.org/10.1108/02644400410519794

Cullen, P. J., Romañach, R. J., Abatzoglou, N., & Rielly, C. D. (2015). Pharmaceutical Blending and Mixing. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118682692

Poux, M., Fayolle, P., Bertrand, J., Bridoux, D., & Bousquet, J. (1991). Powder mixing: Some practical rules applied to agitated systems. Powder Technology, 3, 213–234. https://doi.org/10.1016/0032-5910(91)80047-m DOI: https://doi.org/10.1016/0032-5910(91)80047-M