Effect on Strength of Different Fiber Orientation Angles of the Composite Plate Under Out of Plane Load

Main Article Content

Emre Yılmaz

Abstract

Composite materials obtained by combining two or more materials macroscopically; It is expressed as a new type of material with low specific gravity, high strength and high rigidity properties. Composite materials are materials that are used under different loads and can be produced in various constructions. In this study, the effects of fiber orientation angle degrees on stress and deformation in composite plates with different fiber materials were investigated using the finite element method. Graphite, glass and aramid as fiber materials; Epoxy was chosen as the matrix material. According to the analysis results, while the stress and deformation values increased as the fiber angle increased in the graphite and aramid fiber epoxy matrix composite plates, the stress and deformation values did not change at different fiber angles in the glass fiber epoxy matrix composite plate.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yılmaz, E. (2022). Effect on Strength of Different Fiber Orientation Angles of the Composite Plate Under Out of Plane Load. The European Journal of Research and Development, 2(4), 192–202. https://doi.org/10.56038/ejrnd.v2i4.167
Section
Articles

References

Bahei-El-Din, Y.A. & Dvorak, G.J. (1982). Plasticity Analysis of Laminated Composite Plates, Journal of Applied Mechanics, ASME, 49, 740-746. DOI: https://doi.org/10.1115/1.3162611

Bienias, J. & Jakubczak, P. (2017). Impact damage growth in carbon fibre aluminium laminates, Composite Structures, 172, 147-154. DOI: https://doi.org/10.1016/j.compstruct.2017.03.075

Eltaher, M., A., Alsulami, R., & Wagih, A. (2021). On the evolution of energy dissipation in dispersed composite laminates under out-of-plane loading, Composites Part B: Engineering, 216, 1-8. DOI: https://doi.org/10.1016/j.compositesb.2021.108864

Finn, S.R., He, Y.F. & Springer G.S. (1993). Delaminations in composite plates under transverse impact loads — experimental results, Composite Structures, 23(3), 191-204. DOI: https://doi.org/10.1016/0263-8223(93)90222-C

Fuller, J.D. & Wisnom, M.R. (2015). Exploration of the potential for pseudo-ductility in thin ply CFRP angle-ply laminates via an analytical method, Composites Science and Technology, 112, 8-15. DOI: https://doi.org/10.1016/j.compscitech.2015.02.019

Gonzalez, E., Maimi, P., Camanho, P., Lopes, C. & Blanco, N. (2011). Effects of ply clustering in laminated composite plates under low-velocity impact loading, Composites Science and Technology, 71(6), 805- 817. DOI: https://doi.org/10.1016/j.compscitech.2010.12.018

Guillamet, G., Turon, A., Costa, J., Renart, J., Linde, P. & Mayugo J.A. (2014). Damage occurrence at edges of non-crimp-fabric thin-ply laminates under off-axis uniaxial loading, Composites Science and Technology, 28, 44-50. DOI: https://doi.org/10.1016/j.compscitech.2014.04.014

Jones, R.M. (1975). Mechanics of Composite Materials, Mc.Graw-Hill, Kogahusha, Tokyo. DOI: https://doi.org/10.1115/1.3423688

Kaw A. (2006). Mechanics of Composite Materials, LLC. DOI: https://doi.org/10.1201/9781420058291

Kim, J.S., Choi, D.G., Lee, S.Y. & Park, J.S., (2017). Failure Prediction of Composite Laminates under Out-of-Plane Loading, Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering, ICMIE 107. DOI: https://doi.org/10.11159/icmie17.107

Mawenya, A.S., & Daveis, J.D. (1974). Finite element bending analysis of multilayer plates, International Journal for Numerical Methods in Engineering, 8, 215-225. DOI: https://doi.org/10.1002/nme.1620080203

Mikkor, K.M., Thomson, R.S., Herszberg, I., Weller, T. & Mouritz, A.P. (2006). Finite element modelling of impact on preloaded composite panels, Composite Structures, 75(1-4), 501-503. DOI: https://doi.org/10.1016/j.compstruct.2006.04.056

Rad, A.V., Keller, T. & Vassilopoulos, A.P. (2019). Creep effects on tension-tension fatigue behavior of angle-ply GFRP composite laminates, International Journal of Fatigue, 123, 144-156. DOI: https://doi.org/10.1016/j.ijfatigue.2019.02.010

Rathnasabapathy, M., Orifici, A.C. & Mouritz, A.P. (2022). Impact damage to fibre metal laminates under compression loading, Composites Communications, 32. DOI: https://doi.org/10.1016/j.coco.2022.101148

Rathnasabapathy, M., Mouritz, A.P. & Orifici, A.C. (2022). Impact-under-load damage tolerance of a fibre metal laminate, Composite Structures, 287. DOI: https://doi.org/10.1016/j.compstruct.2022.115368

Shyr, T.W. & Pan, Y.H. (2003). Impact resistance and damage characteristics of composite laminates, Composites Structures, 62(2), 193-203. DOI: https://doi.org/10.1016/S0263-8223(03)00114-4

Smith, W. F. (1998). Princípios de Ciência e Engenharia dos Materiais, Lisboa: McGraw-Hill de Portugal Ltda.

Sousa, F.K., Ujike, I. & Kadota, A. (2016). Effect of Different Fiber Angles for Composite Material with Fiberglass Reinforced on Mechanical Properties, International Journal of Mining, Metallurgy & Mechanical Engineering, 4(1), 1-6.

Wagih, A., Maimi, P., Gonzalez, E.V., Blanco, N., Aja, J.R., Escalera, F.M., Olsson, R. & Alvarez, E. (2016). Damage sequence in thin-ply composite laminates under out-of-plane loading, Composites Part A: Applied Science and Manufacturing, 87, 66-77. DOI: https://doi.org/10.1016/j.compositesa.2016.04.010

Wagih, A., Maimi, P., Blanco, N., & Gonzalez, E.V., (2019). Scaling effects of composite laminates under out-of-plane loading, Composites Part A: Applied Science and Manufacturing, 116, 1-12. DOI: https://doi.org/10.1016/j.compositesa.2018.10.001

Yamada, K., Kötter, B., Nishikawa, M., Fukudome, S., Matsuda, N., Kawabe, K., Fiedler, B. & Hojo, M. (2021). Mechanical properties and failure mode of thin-ply fiber metal laminates under out-of-plane loading, Composites Part A: Applied Science and Manufacturing, 143, 1-10. DOI: https://doi.org/10.1016/j.compositesa.2020.106267

Yılmaz, E. (2022). Elastic-Plastic Stress Analysis of Steel Fiber Reinforced Composite Plates Under Axial Load. The European Journal of Research and Development, 2(2), 34–44. DOI: https://doi.org/10.56038/ejrnd.v2i2.25

Yokozeki, T., Aoki, Y. & Ogasawara, T. (2008). Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates, Composite Structures, 82(3), 382-389. DOI: https://doi.org/10.1016/j.compstruct.2007.01.015

Yokozeki, T., Kuroda, A., Yoshimura, A., Ogasawara, T. & Aoki, T. (2010). Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings, Composite Structures, 93(1), 49-57. DOI: https://doi.org/10.1016/j.compstruct.2010.06.016

Yuan, Y., Yao, X., Liu, B., Heng, Y. & Haroon I. (2017). Failure modes and strength prediction of thin plyCFRP angle-ply laminates Compos Struct, 176(15), 729-735. DOI: https://doi.org/10.1016/j.compstruct.2017.06.005

Yuan, Y., Wang, S., Yang, H., Yao, X. & Liu, B. (2017). Analysis of pseudo-ductility in thin-ply carbon fiber angle-ply laminates, Composite Structures, 180, 876-882. DOI: https://doi.org/10.1016/j.compstruct.2017.08.070

Zhang, X., Davies, G.A.O. & Hitchings, D. (1999). Impact damage with compressive preload and post-impact compression of carbon composite plates, International Journal of Impact Engineering, 22(5), 485-509. DOI: https://doi.org/10.1016/S0734-743X(99)00003-2

Zhang, Y., Zhou, Z., Pan, S., & Tan., Z. (2020). Comparison of failure modes and damage mechanisms of CFRP and C/C composite joints under out-of-plane loading, Mechanics of Advanced Materials and Structures, 29(4), 623-632. DOI: https://doi.org/10.1080/15376494.2020.1783404