Water - Based Polyurethanes for Antibacterial Coatings: an Overview

Main Article Content

Kaan Aksoy

Abstract

The spread of bacterial infections and the resulting loss of life and material have led scientists to research ways to develop knowledge in these disease-causing microorganisms. Usage of antibacterial polymer coatings is an important part of this area.  Among the polymers, water-based polyurethanes (WPU’s) have received a lot of attention in biomedical fields such as antibacterial coatings, biological products and wound dressings due to their unique properties such as reduced use of volatile organic compounds (VOC), biocompatibility, the possibility of using a variety of raw materials. In this review, the methods of creating antibacterial properties in polymers, the synthesis of WPU’s and WPU-based antibacterial coatings are reviewed. The products produced as a result of these studies have been recommended for various fields such as the dressing and packaging industries, and the coating of medical equipment.

Downloads

Download data is not yet available.

Article Details

How to Cite
Aksoy, K. (2022). Water - Based Polyurethanes for Antibacterial Coatings: an Overview. The European Journal of Research and Development, 2(4), 213–242. https://doi.org/10.56038/ejrnd.v2i4.124
Section
Articles

References

Adler, Heiko, Messerle, Martin, Wagner, Markus, & Koszinowski, Ulrich H. (2000). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. Journal of virology, 74(15), 6964-6974. DOI: https://doi.org/10.1128/JVI.74.15.6964-6974.2000

Agnol, Lucas Dall, Dias, Fernanda Trindade Gonzalez, Ornaghi Jr, Heitor Luiz, Sangermano, Marco, & Bianchi, Otavio. (2021). UV-curable waterborne polyurethane coatings: A state-of-the-art and recent advances review. Progress in Organic Coatings, 154, 106156. DOI: https://doi.org/10.1016/j.porgcoat.2021.106156

Akindoyo, John O, Beg, MdDH, Ghazali, Suriati, Islam, MR, Jeyaratnam, Nitthiyah, & Yuvaraj, AR. (2016). Polyurethane types, synthesis and applications–a review. Rsc Advances, 6(115), 114453-114482. DOI: https://doi.org/10.1039/C6RA14525F

Anıl, Deniz, Berksun, Ekin, Durmuş-Sayar, Ayşe, Sevinis, E Billur, & Ünal, Serkan. (2020). Recent advances in waterborne polyurethanes and their nanoparticle-containing dispersions. Handbook of waterborne coatings, 249-302. DOI: https://doi.org/10.1016/B978-0-12-814201-1.00011-1

Anthierens, Tom, Billiet, Leen, Devlieghere, Frank, & Du Prez, Filip. (2012). Poly (butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material. Innovative Food Science & Emerging Technologies, 15, 81-85. DOI: https://doi.org/10.1016/j.ifset.2012.02.010

Arora, Ankita, & Mishra, Abhijit. (2018). Antibacterial polymers–a mini review. Materials Today: Proceedings, 5(9), 17156-17161. DOI: https://doi.org/10.1016/j.matpr.2018.04.124

Arshad, Noureen, Zia, Khalid Mahmood, Jabeen, Farukh, Anjum, Muhammad Naveed, Akram, Nadia, & Zuber, Mohammad. (2018). Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. International journal of biological macromolecules, 111, 485-492. DOI: https://doi.org/10.1016/j.ijbiomac.2018.01.032

Ashkarran, Ali Akbar, Hamidinezhad, Habib, Haddadi, Hedayat, & Mahmoudi, Morteza. (2014). Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Applied Surface Science, 301, 338-345. DOI: https://doi.org/10.1016/j.apsusc.2014.02.074

Atef El-Sayed, A, El Gabry, LK, & Allam, OG. (2010). Application of prepared waterborne polyurethane extended with chitosan to impart antibacterial properties to acrylic fabrics. Journal of Materials Science: Materials in Medicine, 21(2), 507-514. DOI: https://doi.org/10.1007/s10856-009-3900-4

Azam, Ameer, Ahmed, Arham S, Oves, M, Khan, MS, & Memic, Adnan. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. International journal of nanomedicine, 7, 3527. DOI: https://doi.org/10.2147/IJN.S29020

Azam, Ameer, Ahmed, Arham S, Oves, Mohammad, Khan, Mohammad S, Habib, Sami S, & Memic, Adnan. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International journal of nanomedicine, 7, 6003. DOI: https://doi.org/10.2147/IJN.S35347

Bai, Chen Yan, Zhang, Xing Yuan, Dai, Jia Bing, & Li, Wei Hu. (2006). A new UV curable waterborne polyurethane: Effect of CC content on the film properties. Progress in Organic Coatings, 55(3), 291-295. DOI: https://doi.org/10.1016/j.porgcoat.2005.12.002

Bankoti, Kamakshi, Rameshbabu, Arun Prabhu, Datta, Sayanti, Maity, Priti Prasanna, Goswami, Piyali, Datta, Pallab, . . . Dhara, Santanu. (2017). Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Materials Science and Engineering: C, 81, 133-143. DOI: https://doi.org/10.1016/j.msec.2017.07.018

Banks, V, Bale, S, Harding, K, & Harding, EF. (1997). Evaluation of a new polyurethane foam dressing. Journal of wound care, 6(6), 266-269. DOI: https://doi.org/10.12968/jowc.1997.6.6.266

Barikani, M, Valipour Ebrahimi, M, & Seyed Mohaghegh, SM. (2007). Preparation and characterization of aqueous polyurethane dispersions containing ionic centers. Journal of Applied Polymer Science, 104(6), 3931-3937. DOI: https://doi.org/10.1002/app.26138

Borgquist, Per, Körner, Anna, Piculell, Lennart, Larsson, Anette, & Axelsson, Anders. (2006). A model for the drug release from a polymer matrix tablet—effects of swelling and dissolution. Journal of controlled release, 113(3), 216-225. DOI: https://doi.org/10.1016/j.jconrel.2006.05.004

Buchan, IA, Andrews, JK, Lang, SM, Boorman, JG, Kemble, JV Harvey, & Lamberty, BGH. (1981). Clinical and laboratory investigation of the composition and properties of human skin wound exudate under semi-permeable dressings. Burns, 7(5), 326-334. DOI: https://doi.org/10.1016/0305-4179(81)90005-X

Chakraborti, Michelle, Jackson, John K, Plackett, David, Gilchrist, Samuel E, & Burt, Helen M. (2012). The application of layered double hydroxide clay (LDH)-poly (lactide-co-glycolic acid)(PLGA) film composites for the controlled release of antibiotics. Journal of Materials Science: Materials in Medicine, 23(7), 1705-1713. DOI: https://doi.org/10.1007/s10856-012-4638-y

Chang, Jinming, Yang, Gaofu, Zheng, Qi, Wang, Zhonghui, Xu, Zhou, Chen, Yi, & Fan, Haojun. (2017). Poly (N-acryloyl ciprofloxacin-Co-acrylic acid)-incorporated waterborne polyurethane leather coating with long-lasting antimicrobial properties. Journal of the American Leather Chemists Association, 112(01), 15-22.

Chen, Jianfeng, Wang, Qi, Luan, Mingxing, Mo, Jingwen, Yan, Yuefen, & Li, Xiaobing. (2019). Polydopamine as reinforcement in the coating of nano-silver on polyurethane surface: Performance and mechanisms. Progress in Organic Coatings, 137, 105288. DOI: https://doi.org/10.1016/j.porgcoat.2019.105288

Chen, LIANG, Suh, Byoung In, & Yang, Jie. (2018). Antibacterial dental restorative materials: A review. Am J Dent, 31(Sp Is B), 6B-12B.

Chen, Xinxin, Zhao, Rui, Wang, Xiang, Li, Xiang, Peng, Fei, Jin, Zhenghua, . . . Wang, Ce. (2017). Electrospun mupirocin loaded polyurethane fiber mats for anti-infection burn wound dressing application. Journal of Biomaterials science, Polymer edition, 28(2), 162-176. DOI: https://doi.org/10.1080/09205063.2016.1262158

Chen, Yuan, Tan, Wenqiang, Li, Qing, Dong, Fang, Gu, Guodong, & Guo, Zhanyong. (2018). Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity. International journal of biological macromolecules, 113, 1273-1278. DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.055

Chitichotpanya, Pisutsaran, Inprasit, Thitirat, & Chitichotpanya, Chayanisa. (2019). In vitro assessment of antibacterial potential and mechanical properties of Ag-TiO2/WPU on medical cotton optimized with response surface methodology. Journal of natural fibers, 16(1), 88-99. DOI: https://doi.org/10.1080/15440478.2017.1408520

Chu, Paul K, Chen, JY, Wang, LP, & Huang, Nan. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5-6), 143-206. DOI: https://doi.org/10.1016/S0927-796X(02)00004-9

Du, Mingliang, Guo, Baochun, & Jia, Demin. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59(5), 574-582. DOI: https://doi.org/10.1002/pi.2754

Eltorai, Adam EM, Haglin, Jack, Perera, Sudheesha, Brea, Bielinsky A, Ruttiman, Roy, Garcia, Dioscaris R, . . . Daniels, Alan H. (2016). Antimicrobial technology in orthopedic and spinal implants. World Journal of Orthopedics, 7(6), 361. DOI: https://doi.org/10.5312/wjo.v7.i6.361

Fan, Zenglu, Li, Qing, Cai, Xinbin, & Li, Zhibin. (2017). Synthesis of reactive waterborne polyurethane modified with quaternary ammonium chain extender and its color fixation properties. The Journal of The Textile Institute, 108(7), 1227-1233. DOI: https://doi.org/10.1080/00405000.2016.1236445

Fei Liu, Xiao, Lin Guan, Yun, Zhi Yang, Dong, Li, Zhi, & De Yao, Kang. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335. DOI: https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L

Francolini, I, D’Ilario, L, Guaglianone, E, Donelli, G, Martinelli, A, & Piozzi, A. (2010). Polyurethane anionomers containing metal ions with antimicrobial properties: thermal, mechanical and biological characterization. Acta biomaterialia, 6(9), 3482-3490. DOI: https://doi.org/10.1016/j.actbio.2010.03.042

Fu, Heqing, Wang, Yin, Li, Xiaoya, & Chen, Weifeng. (2016). Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Composites Science and Technology, 126, 86-93. DOI: https://doi.org/10.1016/j.compscitech.2016.02.018

Fu, Xiaorong, Shen, Yun, Jiang, Xue, Huang, Dan, & Yan, Yiqi. (2011). Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics. Carbohydrate polymers, 85(1), 221-227. DOI: https://doi.org/10.1016/j.carbpol.2011.02.019

Gaballah, Samir T, El-Nazer, Hossam A, Abdel-Monem, Reham A, El-Liethy, Mohamed Azab, Hemdan, Bahaa A, & Rabie, Samira T. (2019). Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. International journal of biological macromolecules, 121, 707-717. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.085

Gu, Li Zhi, Hong, Qi, & Xiang, Chun Jiang. (2010). The application of nanotechnology for mechanical manufacturing. Paper presented at the Key Engineering Materials. DOI: https://doi.org/10.4028/www.scientific.net/KEM.447-448.86

Gurunathan, Sangiliyandi, Qasim, Muhammad, Park, Chanhyeok, Yoo, Hyunjin, Choi, Dong Yoon, Song, Hyuk, . . . Hong, Kwonho. (2018). Cytotoxicity and transcriptomic analysis of silver nanoparticles in mouse embryonic fibroblast cells. International Journal of Molecular Sciences, 19(11), 3618. DOI: https://doi.org/10.3390/ijms19113618

Haider, Adawiyah J, Jameel, Zainab N, & Al-Hussaini, Imad HM. (2019). Review on: titanium dioxide applications. Energy Procedia, 157, 17-29. DOI: https://doi.org/10.1016/j.egypro.2018.11.159

Hasnain, Sumaiya, & Nishat, Nahid. (2012). Synthesis, characterization and biocidal activities of Schiff base polychelates containing polyurethane links in the main chain. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 95, 452-457. DOI: https://doi.org/10.1016/j.saa.2012.04.018

Hendessi, Saman, Sevinis, E Billur, Unal, Serkan, Cebeci, Fevzi C, Menceloglu, Yusuf Z, & Unal, Hayriye. (2016). Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes. Progress in Organic Coatings, 101, 253-261. DOI: https://doi.org/10.1016/j.porgcoat.2016.09.005

Hezma, AM, Rajeh, A, & Mannaa, Mohammed A. (2019). An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581, 123821. DOI: https://doi.org/10.1016/j.colsurfa.2019.123821

Honarkar, Hengameh. (2018). Waterborne polyurethanes: A review. Journal of Dispersion Science and Technology, 39(4), 507-516. DOI: https://doi.org/10.1080/01932691.2017.1327818

Hotha, Srinivas, Anegundi, Ramakrishna I, & Natu, Arvind A. (2005). Expedient synthesis of 1, 2, 3-triazole-fused tetracyclic compounds by intramolecular Huisgen (‘click’) reactions on carbohydrate-derived azido-alkynes. Tetrahedron Letters, 46(27), 4585-4588. DOI: https://doi.org/10.1016/j.tetlet.2005.05.012

Hu, Haibo, Yuan, Yan, & Shi, Wenfang. (2012). Preparation of waterborne hyperbranched polyurethane acrylate/LDH nanocomposite. Progress in Organic Coatings, 75(4), 474-479. DOI: https://doi.org/10.1016/j.porgcoat.2012.06.007

Huang, Chihpin, Chen, Shuchuan, & Pan, Jill Ruhsing. (2000). Optimal condition for modification of chitosan: a biopolymer for coagulation of colloidal particles. Water Research, 34(3), 1057-1062. DOI: https://doi.org/10.1016/S0043-1354(99)00211-0

Huang, Wei, Wang, Yingjie, Zhang, Shuang, Huang, Li, Hua, Daoben, & Zhu, Xiulin. (2013). A facile approach for controlled modification of chitosan under γ-ray irradiation for drug delivery. Macromolecules, 46(3), 814-818. DOI: https://doi.org/10.1021/ma302434c

Imazato, Satoshi, Chen, Ji-hua, Ma, Sai, Izutani, Naomi, & Li, Fang. (2012). Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Japanese Dental Science Review, 48(2), 115-125. DOI: https://doi.org/10.1016/j.jdsr.2012.02.003

Jain, Anjali, Duvvuri, L Sailaja, Farah, Shady, Beyth, Nurit, Domb, Abraham J, & Khan, Wahid. (2014). Antimicrobial polymers. Advanced healthcare materials, 3(12), 1969-1985. DOI: https://doi.org/10.1002/adhm.201400418

Javaid, Muhammad Asif, Khera, Rasheed Ahmad, Zia, Khalid Mahmood, Saito, Kei, Bhatti, Ijaz Ahmad, & Asghar, Muhammad. (2018). Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential. International journal of biological macromolecules, 115, 375-384. DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.013

Jiang, Guofei, Li, Xufei, Che, Yangli, Lv, Yan, Liu, Fang, Wang, Yongqiang, . . . Wang, Xiaojuan. (2019). Antibacterial and anticorrosive properties of CuZnO@ RGO waterborne polyurethane coating in circulating cooling water. Environmental Science and Pollution Research, 26(9), 9027-9040. DOI: https://doi.org/10.1007/s11356-019-04374-0

Kim, BK. (1996). Aqueous polyurethane dispersions. Colloid and Polymer Science, 274(7), 599-611. DOI: https://doi.org/10.1007/BF00653056

Kim, Chun‐Ho, Kim, So‐Yeon, & Choi, Kyu‐Suk. (1997). Synthesis and Antibacterial Activity of Water‐soluble Chitin Derivatives. Polymers for Advanced Technologies, 8(5), 319-325. DOI: https://doi.org/10.1002/(SICI)1099-1581(199705)8:5<319::AID-PAT645>3.0.CO;2-G

Kowalczuk, Dorota, & Pitucha, Monika. (2019). Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials. Materials, 12(18), 2972. DOI: https://doi.org/10.3390/ma12182972

Krishnamoorthy, Karthikeyan, Umasuthan, Navaneethaiyer, Mohan, Rajneesh, Lee, Jehee, & Kim, Sang-Jae. (2012). Antibacterial activity of graphene oxide nanosheets. Science of Advanced Materials, 4(11), 1111-1117. DOI: https://doi.org/10.1166/sam.2012.1402

Kunkalekar, RK. (2019). Role of oxides (Fe3O4, MnO2) in the antibacterial action of Ag–metal oxide hybrid nanoparticles. In Noble Metal-Metal Oxide Hybrid Nanoparticles (pp. 303-312): Elsevier. DOI: https://doi.org/10.1016/B978-0-12-814134-2.00010-3

Laurent, Sophie, Forge, Delphine, Port, Marc, Roch, Alain, Robic, Caroline, Vander Elst, Luce, & Muller, Robert N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 108(6), 2064-2110. DOI: https://doi.org/10.1021/cr068445e

Lehocký, Marián, Drnovská, Hana, Lapčı́ková, Barbora, Barros-Timmons, AM, Trindade, Tito, Zembala, Maria, & Lapčı́k Jr, Lubomı́r. (2003). Plasma surface modification of polyethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 222(1-3), 125-131. DOI: https://doi.org/10.1016/S0927-7757(03)00242-5

Liang, Haiyan, Liu, Lingxiao, Lu, Jingyi, Chen, Moutong, & Zhang, Chaoqun. (2018). Castor oil-based cationic waterborne polyurethane dispersions: Storage stability, thermo-physical properties and antibacterial properties. Industrial Crops and Products, 117, 169-178. DOI: https://doi.org/10.1016/j.indcrop.2018.02.084

Liu, He, Song, Jie, Shang, Shibin, Song, Zhanqian, & Wang, Dan. (2012). Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS applied materials & interfaces, 4(5), 2413-2419. DOI: https://doi.org/10.1021/am3000209

Liu, Kai, Su, Zhiguo, Miao, Shida, Ma, Guanghui, & Zhang, Songping. (2016). UV-curable enzymatic antibacterial waterborne polyurethane coating. Biochemical Engineering Journal, 113, 107-113. DOI: https://doi.org/10.1016/j.bej.2016.06.004

Ma, Xue-Yong, & Zhang, Wei-De. (2009). Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation and Stability, 94(7), 1103-1109. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.03.024

Marambio-Jones, Catalina, & Hoek, Eric. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of nanoparticle research, 12(5), 1531-1551. DOI: https://doi.org/10.1007/s11051-010-9900-y

Marković, Zoran, Kováčová, Mária, Mičušik, Matej, Danko, Martin, Švajdlenkova, Helena, Kleinova, Angela, . . . Špitalský, Zdeno. (2019). Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. Journal of Applied Polymer Science, 136(13), 47283. DOI: https://doi.org/10.1002/app.47283

Masson, F, Decker, C, Jaworek, T, & Schwalm, R. (2000). UV-Radiation curing of waterbased urethane–acrylate coatings. Progress in Organic Coatings, 39(2-4), 115-126. DOI: https://doi.org/10.1016/S0300-9440(00)00128-4

Mirmohseni, Abdolreza, Azizi, Maryam, & Dorraji, Mir Saeed Seyed. (2019). Facile synthesis of copper/reduced single layer graphene oxide as a multifunctional nanohybrid for simultaneous enhancement of antibacterial and antistatic properties of waterborne polyurethane coating. Progress in Organic Coatings, 131, 322-332. DOI: https://doi.org/10.1016/j.porgcoat.2019.02.031

Mirmohseni, Abdolreza, Azizi, Maryam, & Seyed Dorraji, Mir Saeed. (2019). A promising ternary nanohybrid of Copper@ Zinc oxide intercalated with polyaniline for simultaneous antistatic and antibacterial applications. Journal of Coatings Technology and Research, 16(5), 1411-1422. DOI: https://doi.org/10.1007/s11998-019-00223-4

Mohammadi, Abbas, Barikani, Mehdi, Doctorsafaei, Amir Hossein, Isfahani, Ali Pournaghshband, Shams, Esmaeil, & Ghalei, Behnam. (2018). Aqueous dispersion of polyurethane nanocomposites based on calix [4] arenes modified graphene oxide nanosheets: preparation, characterization, and anti-corrosion properties. Chemical Engineering Journal, 349, 466-480. DOI: https://doi.org/10.1016/j.cej.2018.05.111

Morent, Rino, De Geyter, Nathalie, Desmet, Tim, Dubruel, Peter, & Leys, Christophe. (2011). Plasma surface modification of biodegradable polymers: a review. Plasma processes and polymers, 8(3), 171-190. DOI: https://doi.org/10.1002/ppap.201000153

Naz, Farah, Zuber, Mohammad, Zia, Khalid Mehmood, Salman, Mahwish, Chakraborty, Jeet, Nath, Ipsita, & Verpoort, Francis. (2018). Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohydrate polymers, 200, 54-62. DOI: https://doi.org/10.1016/j.carbpol.2018.07.076

Nguyen, Minh Dang, Tran, Hung-Vu, Xu, Shoujun, & Lee, T Randall. (2021). Fe3O4 Nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences, 11(23), 11301. DOI: https://doi.org/10.3390/app112311301

Ojijo, Vincent, & Ray, Suprakas Sinha. (2013). Processing strategies in bionanocomposites. Progress in Polymer Science, 38(10-11), 1543-1589. DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.011

Olmos, Dania, & González-Benito, Javier. (2021). Polymeric materials with antibacterial activity: A Review. Polymers, 13(4), 613. DOI: https://doi.org/10.3390/polym13040613

Park, Hyoungshin, Cannizzaro, Christopher, Vunjak-Novakovic, Gordana, Langer, Robert, Vacanti, Charles A, & Farokhzad, Omid C. (2007). Nanofabrication and microfabrication of functional materials for tissue engineering. Tissue engineering, 13(8), 1867-1877. DOI: https://doi.org/10.1089/ten.2006.0198

Park, Jae Hyeung, Kim, In Kyo, Choi, Jae Young, Karim, Mohammad Rezaul, Cheong, In Woo, Oh, Weontae, & Yeum, Jeong Hyun. (2011). Electrospinning Fabrication of polyvinyl alcohol)/waterborne polyurethane/silver composite nanofibre mats in aqueous solution for anti-bacterial exploits. Polymers and Polymer Composites, 19(9), 753-762. DOI: https://doi.org/10.1177/096739111101900905

Patil, Chandrashekhar K, Jirimali, Harishchandra D, Paradeshi, Jayasinh S, Chaudhari, Bhushan L, & Gite, Vikas V. (2019). Functional antimicrobial and anticorrosive polyurethane composite coatings from algae oil and silver doped egg shell hydroxyapatite for sustainable development. Progress in Organic Coatings, 128, 127-136. DOI: https://doi.org/10.1016/j.porgcoat.2018.11.002

Perreault, François, De Faria, Andreia Fonseca, Nejati, Siamak, & Elimelech, Menachem. (2015). Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS nano, 9(7), 7226-7236. DOI: https://doi.org/10.1021/acsnano.5b02067

Petrović, Zoran S, Cho, Young Jin, Javni, Ivan, Magonov, Sergei, Yerina, Natalia, Schaefer, Dale W, . . . Waddon, Alan. (2004). Effect of silica nanoparticles on morphology of segmented polyurethanes. Polymer, 45(12), 4285-4295. DOI: https://doi.org/10.1016/j.polymer.2004.04.009

Priyaa, G Hari, & Satyan, Kumudini Belur. (2014). Biological synthesis of silver nanoparticles using ginger (Zingiber officinale) extract. J. Environ. Nanotechnol, 3(4), 32-40. DOI: https://doi.org/10.13074/jent.2014.12.143106

Qi, Lifeng, Xu, Zirong, Jiang, Xia, Hu, Caihong, & Zou, Xiangfei. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 339(16), 2693-2700. DOI: https://doi.org/10.1016/j.carres.2004.09.007

Rather, Gulzar Ahmed, Nanda, Anima, Chakravorty, Arghya, Hamid, Saima, Khan, Johra, Rather, Mohd Asharaf, . . . Rahman, Md Habibur. (2021). Biogenic Green Synthesis of Nanoparticles from Living Sources with Special Emphasis on Their Biomedical Applications. DOI: https://doi.org/10.21203/rs.3.rs-178316/v1

Rizzello, Loris, Cingolani, Roberto, & Pompa, Pier Paolo. (2013). Nanotechnology tools for antibacterial materials. Nanomedicine, 8(5), 807-821. DOI: https://doi.org/10.2217/nnm.13.63

Sabitha, M, & Rajiv, Sheeja. (2015). Preparation and characterization of ampicillin‐incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polymer Engineering & Science, 55(3), 541-548. DOI: https://doi.org/10.1002/pen.23917

Saeedi, Sara, Omrani, Ismail, Bafkary, Reza, Sadeh, Elaheh, Shendi, Hasan Kashef, & Nabid, Mohammad Reza. (2019). Facile preparation of biodegradable dual stimuli-responsive micelles from waterborne polyurethane for efficient intracellular drug delivery. New Journal of Chemistry, 43(47), 18534-18545. DOI: https://doi.org/10.1039/C9NJ03773J

Saikia, C, Gogoi, P, & Maji, TK. (2015). Chitosan: A promising biopolymer in drug delivery applications. J. Mol. Genet. Med. S, 4(006), 899-910. DOI: https://doi.org/10.4172/1747-0862.S4-006

Sajomsang, Warayuth, Gonil, Pattarapond, & Tantayanon, Supawan. (2009). Antibacterial activity of quaternary ammonium chitosan containing mono or disaccharide moieties: Preparation and characterization. International journal of biological macromolecules, 44(5), 419-427. DOI: https://doi.org/10.1016/j.ijbiomac.2009.03.003

Shendi, Hasan Kashef, Omrani, Ismail, Ahmadi, Abbas, Farhadian, Abdolreza, Babanejad, Niloofar, & Nabid, Mohammad Reza. (2017). Synthesis and characterization of a novel internal emulsifier derived from sunflower oil for the preparation of waterborne polyurethane and their application in coatings. Progress in Organic Coatings, 105, 303-309. DOI: https://doi.org/10.1016/j.porgcoat.2016.11.033

Shin, Eun Joo, & Choi, Soon Mo. (2018). Advances in waterborne polyurethane-based biomaterials for biomedical applications. Novel biomaterials for regenerative medicine, 251-283. DOI: https://doi.org/10.1007/978-981-13-0947-2_14

Strobel, Mark, Lyons, Christopher Stewart, & Mittal, Kash L. (1994). Plasma surface modification of polymers: relevance to adhesion.

Tao, Qi, Zhang, Yuanming, Zhang, Xiang, Yuan, Peng, & He, Hongping. (2006). Synthesis and characterization of layered double hydroxides with a high aspect ratio. Journal of Solid State Chemistry, 179(3), 708-715. DOI: https://doi.org/10.1016/j.jssc.2005.11.023

Tijing, Leonard D, Ruelo, Michael Tom G, Amarjargal, Altangerel, Pant, Hem Raj, Park, Chan-Hee, Kim, Dong Won, & Kim, Cheol Sang. (2012). Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles. Chemical Engineering Journal, 197, 41-48. DOI: https://doi.org/10.1016/j.cej.2012.05.005

Tsou, Chi-Hui, Lee, Hsun-Tsing, Hung, Wei-Song, Wang, Chyung-Chyung, Shu, Chia-Chen, Suen, Maw-Cherng, & De Guzman, Manuel. (2016). Synthesis and properties of antibacterial polyurethane with novel Bis (3-pyridinemethanol) silver chain extender. Polymer, 85, 96-105. DOI: https://doi.org/10.1016/j.polymer.2016.01.042

Unnithan, Afeesh Rajan, Gnanasekaran, Gopalsamy, Sathishkumar, Yesupatham, Lee, Yang Soo, & Kim, Cheol Sang. (2014). Electrospun antibacterial polyurethane–cellulose acetate–zein composite mats for wound dressing. Carbohydrate polymers, 102, 884-892. DOI: https://doi.org/10.1016/j.carbpol.2013.10.070

Valappil, Sabeel P, Pickup, David M, Carroll, Donna L, Hope, Chris K, Pratten, Jonathan, Newport, Robert J, . . . Knowles, Jonathan C. (2007). Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrobial agents and chemotherapy, 51(12), 4453-4461. DOI: https://doi.org/10.1128/AAC.00605-07

Valsalam, Saritha, Agastian, Paul, Arasu, Mariadhas Valan, Al-Dhabi, Naif Abdullah, Ghilan, Abdul-Kareem Mohammed, Kaviyarasu, K, . . . Arokiyaraj, S. (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry and Photobiology B: Biology, 191, 65-74. DOI: https://doi.org/10.1016/j.jphotobiol.2018.12.010

Velmurugan, Palanivel, Anbalagan, Krishnan, Manosathyadevan, Manoharan, Lee, Kui-Jae, Cho, Min, Lee, Sang-Myeong, . . . Oh, Byung-Taek. (2014). Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and biosystems engineering, 37(10), 1935-1943. DOI: https://doi.org/10.1007/s00449-014-1169-6

Wan, Jiaqi, Cai, Wei, Feng, Jiangtao, Meng, Xiangxi, & Liu, Enzhong. (2007). In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. Journal of Materials Chemistry, 17(12), 1188-1192. DOI: https://doi.org/10.1039/b615527h

Wan, Ting, & Chen, Dajun. (2017). Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain. Journal of materials science, 52(1), 197-207. DOI: https://doi.org/10.1007/s10853-016-0321-x

Wang, Chunhua, Wu, Jianhui, Li, Li, Mu, Changdao, & Lin, Wei. (2020). A facile preparation of a novel non-leaching antimicrobial waterborne polyurethane leather coating functionalized by quaternary phosphonium salt. Journal of Leather Science and Engineering, 2(1), 1-12. DOI: https://doi.org/10.1186/s42825-019-0014-8

Wu, Jianhui, Wang, Chunhua, Mu, Changdao, & Lin, Wei. (2018). A waterborne polyurethane coating functionalized by isobornyl with enhanced antibacterial adhesion and hydrophobic property. European Polymer Journal, 108, 498-506. DOI: https://doi.org/10.1016/j.eurpolymj.2018.09.034

Wu, Yi-Chen, & Kuo, Shiao-Wei. (2010). Synthesis and characterization of polyhedral oligomeric silsesquioxane (POSS) with multifunctional benzoxazine groups through click chemistry. Polymer, 51(17), 3948-3955. DOI: https://doi.org/10.1016/j.polymer.2010.06.033

Xiong, Liang, Zhang, Wei‐De, Shi, Qing‐Shan, & Mai, Ai‐Ping. (2015). Waterborne polyurethane/NiAl‐LDH/ZnO composites with high antibacterial activity. Polymers for Advanced Technologies, 26(5), 495-501. DOI: https://doi.org/10.1002/pat.3478

Yang, Nan, Li, Fuyan, Jian, Tiancai, Liu, Chongchong, Sun, Hushan, Wang, Lei, & Xu, Hui. (2017). Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens. Acta Oceanologica Sinica, 36(12), 95-100. DOI: https://doi.org/10.1007/s13131-017-1099-7

Yang, Yunhua, Xiong, Liang, Huang, Xiaomo, Shi, Qingshan, & Zhang, Wei-De. (2019). Waterborne polyurethane composites with antibacterial activity by incorporating p-BzOH intercalated MgAl-LDH. Composites Communications, 13, 112-118. DOI: https://doi.org/10.1016/j.coco.2019.04.003

Yao, Chen, Li, Xinsong, Neoh, KG, Shi, Zhilong, & Kang, ET. (2008). Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties. Journal of Membrane Science, 320(1-2), 259-267. DOI: https://doi.org/10.1016/j.memsci.2008.04.012

Yoo, Hye‐Jin, & Kim, Han‐Do. (2008). Characteristics of waterborne polyurethane/poly (N‐vinylpyrrolidone) composite films for wound‐healing dressings. Journal of Applied Polymer Science, 107(1), 331-338. DOI: https://doi.org/10.1002/app.26970

Zhang, Miao, Li, XH, Gong, YD, Zhao, NM, & Zhang, XF. (2002). Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials, 23(13), 2641-2648. DOI: https://doi.org/10.1016/S0142-9612(01)00403-3

Zhang, Min, Yang, Mao, Woo, Meng Wai, Li, Yanchun, Han, Wenjia, & Dang, Xugang. (2021). High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydrate polymers, 256, 117590. DOI: https://doi.org/10.1016/j.carbpol.2020.117590

Zhang, Wenbo, Deng, Henghui, Xia, Lijuan, Shen, Lan, Zhang, Chaoqun, Lu, Qiming, & Sun, Shaolong. (2021). Semi-interpenetrating polymer networks prepared from castor oil-based waterborne polyurethanes and carboxymethyl chitosan. Carbohydrate polymers, 256, 117507. DOI: https://doi.org/10.1016/j.carbpol.2020.117507

Zhong, Zhen, Luo, Shun, Yang, Kai, Wu, Xiaojian, & Ren, Tianbin. (2017). High-performance anionic waterborne polyurethane/Ag nanocomposites with excellent antibacterial property via in situ synthesis of Ag nanoparticles. Rsc Advances, 7(67), 42296-42304. DOI: https://doi.org/10.1039/C7RA08464A

Zhou, Ruitao, Teo, Shileng, & Srinivasan, MP. (2014). In situ formation of silver nanoparticle layer by supramolecule-directed assembly. Thin Solid Films, 550, 210-219. DOI: https://doi.org/10.1016/j.tsf.2013.10.161

Zia, Fatima, Zia, Khalid Mahmood, Zuber, Mohammad, Kamal, Shagufta, & Aslam, Nosheen. (2015). Starch based polyurethanes: A critical review updating recent literature. Carbohydrate polymers, 134, 784-798. DOI: https://doi.org/10.1016/j.carbpol.2015.08.034

Zimbone, M, Buccheri, MA, Cacciato, G, Sanz, R, Rappazzo, G, Boninelli, S, . . . Grimaldi, MG. (2015). Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Applied Catalysis B: Environmental, 165, 487-494. DOI: https://doi.org/10.1016/j.apcatb.2014.10.031

Zo, Sunmi, Choi, Soonmo, Kim, Hyunduk, Shin, Eunjoo, & Han, Sungsoo. (2020). Synthesis and characterization of carboxymethyl chitosan scaffolds grafted with waterborne polyurethane. Journal of nanoscience and nanotechnology, 20(8), 5014-5018. DOI: https://doi.org/10.1166/jnn.2020.17844