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Abstract 

The increasing integration of advanced technologies and automation in industrial production has 

heightened the importance of operational efficiency and safety. Among the critical components 

influencing workforce performance and product quality is the effective use of electric hand tools. 

However, the limited availability of comprehensive datasets and the absence of robust labeling 

methodologies present significant challenges for accurate data analysis and predictive modeling. 

This study addresses these limitations by incorporating field-collected data and multiple data 

acquisition techniques to identify relevant features for machine learning applications. An initial 

dataset comprising 51 attributes was systematically reduced to 16 through feature selection 

processes, enhancing its suitability for subsequent computational modeling. Several classification 

algorithms were evaluated for data labeling, with the Decision Tree method demonstrating 

superior performance in terms of accuracy. Despite these promising results, the dataset’s limited 

sample size (64 individuals) restricts the generalizability and reliability of machine learning 

outcomes. To mitigate this constraint, data augmentation techniques will be employed to generate 

synthetic instances, thereby expanding the dataset. Upon achieving a sufficient sample size, 

machine learning models will be developed to predict individuals’ proficiency with electric hand 
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tools. This research contributes to the foundational knowledge required for efficient data collection, 

accurate labeling, and the development of predictive models in industrial settings. 

Keywords:   Data Fusion, Machine Learning, Digitization, Data Labeling, Predictive Modeling 

1. Introduction 

 The efficiency and ergonomic use of electric hand tools in industrial production 

processes are critical factors influencing workforce productivity, product quality, and 

occupational health and safety. Accurate and comprehensive data are essential for 

assessing and enhancing the performance of hand tools within manufacturing 

environments. However, conventional evaluation approaches typically depend on a 

single source of data and are limited in their capacity to holistically incorporate real-time 

performance monitoring, ergonomic assessments, and user feedback. 

 To address these limitations, data fusion presents a robust methodology that 

synthesizes information from multiple sources, enabling the extraction of more reliable 

and meaningful insights. This study explores the enhancement of efficiency and usability 

analysis for electric hand tools through the integration of image data, sensor data, and 

survey responses. Image data are utilized to monitor and evaluate hand movements of 

operators within industrial settings, while sensor data capture key dynamic parameters 

from the tools—such as acceleration, gyroscopic activity, and spatial coordinates along 

the x, y, and z axes. In parallel, survey data provide subjective evaluations based on user 

experience and perceived ergonomics. The application of data fusion to combine these 

three data streams yields a more comprehensive and accurate analysis than could be 

achieved by considering each source in isolation. 

 Furthermore, the integration of data from heterogeneous sources not only 

enhances data diversity within industrial processes but also reduces uncertainty, thereby 

supporting more robust and reliable decision-making. The real-time processing of sensor 

and image data facilitates instantaneous monitoring of tool operations and operator 

interactions. This capability enables significant operational improvements, including 

predictive maintenance, energy consumption optimization, and increased workforce 

productivity. Moreover, incorporating subjective feedback from operators into the 

analysis contributes to enhanced user experiences and informs ergonomically optimized 

tool design through data-driven insights.  

 Despite these advantages, the practical implementation of data fusion in industrial 

settings presents several technical challenges. These include the synchronization of 

heterogeneous data streams, the computational demands of processing large volumes of 

data, the requirement for real-time analytical capabilities, and concerns related to data 

security and privacy. To address these issues, this study proposes a data fusion-based 

framework for evaluating the performance and ergonomic suitability of electric hand 
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tools. The paper details the data acquisition protocols, preprocessing strategies, and the 

technical implementation of the fusion methodology. 

 The remainder of this paper is structured as follows: Section 2 presents a review 

of the relevant literature on data fusion techniques; Section 3 outlines the proposed 

methodology; Section 4 discusses the experimental setup, results, and encountered 

technical challenges; Section 5 offers a discussion of the findings; and Section 6 concludes 

the study with final remarks and directions for future research. 

2. Literature 

 In the era of big data, data fusion has emerged as a pivotal technique in the fields 

of analytics, machine learning, and artificial intelligence. By integrating heterogeneous 

data sources, data fusion enhances the accuracy, completeness, and reliability of 

information, thereby improving decision-support systems. This multifaceted approach is 

widely adopted across diverse sectors, including industrial automation, healthcare, 

energy management, finance, and environmental monitoring. Its growing relevance 

reflects the need for more holistic data interpretation frameworks capable of addressing 

complex, data-rich environments. 

 This section provides a comprehensive review of the current literature on data 

fusion methodologies and explores their applications across various domains, with a 

particular focus on their potential and challenges within industrial settings. 

2.1. Data Fusion and Its Applications 

 Fundamental approaches to data fusion are generally categorized into early, late, 

and hybrid fusion methods [1]. These strategies differ based on the stage at which data 

integration occurs within the processing pipeline. Data fusion models have been applied 

across various disciplines, often contextualized within established frameworks such as 

the Joint Directors of Laboratories (JDL) model and Dasarathy’s input-output 

classification scheme. Notably, advanced techniques such as Lie algebra-based 

multisensor data fusion have been proposed to improve data accuracy and reliability by 

leveraging the geometric properties of data distributions on Riemannian manifolds [2]. 

 Recent advancements have increasingly incorporated machine learning and deep 

learning into data fusion processes. For instance, Q-learning-based cascade classifiers and 

softmax models have demonstrated effectiveness in optimizing network energy 

consumption while minimizing error rates in big data fusion scenarios [3]. Furthermore, 

attention-based mechanisms—such as the Attention-Guided Adaptive Temporal-Spatial 

(AGATS) model—have been successfully employed to integrate multi-source datasets in 

financial applications, enhancing the accuracy of stock market predictions [4]. 
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2.2. Sensor and IoT-based Data Fusion 

 The integration of sensor data has emerged as a critical area of focus across a range 

of industries, aiming to enhance data accuracy and operational efficiency. Multi-source 

sensor fusion (MSDF) techniques have proven particularly effective in domains such as 

food safety, where they support contaminant detection through advanced methods 

including hyperspectral imaging, Raman spectroscopy, and chromatographic analysis 

[5]. In structural engineering, the fusion of computer vision and accelerometer data has 

led to significant improvements in dynamic displacement estimation, with notable 

applications in earthquake engineering and infrastructure monitoring [6]. 

 In the context of the Internet of Things (IoT), multi-sensor data fusion plays a 

pivotal role in integrating heterogeneous data streams. This integration facilitates 

intelligent decision-making in energy management, transportation systems, and broader 

smart city applications [7]. Furthermore, sensor fusion techniques have been employed 

in Space Traffic Management (STM) to improve the precision of orbit determination, 

thereby reducing the likelihood of in-orbit collisions and contributing to safer space 

operations [8]. 

2.3. Data Fusion in Healthcare 

 The healthcare sector stands at the forefront of data fusion applications, leveraging 

multimodal integration to enhance diagnostic accuracy, treatment planning, and patient 

monitoring. For instance, in the context of COVID-19, data fusion techniques that 

combine clinical records, laboratory data, and radiomic features have significantly 

improved the prediction of hospitalization outcomes in patient cohorts [9]. In 

pharmaceutical research, models such as TransCDR utilize multimodal data fusion to 

predict cancer drug efficacy by analyzing interactions between drugs and cancer cell 

lines, thereby facilitating more targeted and effective therapies [10]. 

 Furthermore, advanced multi-source data fusion approaches based on generalized 

data representations have shown promise in generating reliable diagnostic outcomes, 

particularly when data availability is limited. Quantum-inspired collaborative fusion 

techniques, for example, have demonstrated notable improvements in diagnostic 

accuracy in applications such as pneumonia detection [11]. These developments 

underscore the growing role of sophisticated data fusion strategies in advancing 

healthcare analytics and decision-making processes. 

2.4. Data Fusion in Environmental and Energy Management 

 Data fusion techniques have also made significant contributions in the fields of 

energy modeling and environmental monitoring, supporting more informed policy-

making and sustainable urban planning. Probabilistic data fusion algorithms based on 



The European Journal of Research and 

Development, 5(1), 2025 https://doi.org/10.56038/ejrnd.v5i1.636  
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 72 

 

maximum likelihood estimation have been effectively applied to model residential 

energy consumption patterns using comprehensive datasets such as the Residential 

Energy Consumption Survey (RECS), offering valuable insights for energy policy 

development [12]. In renewable energy applications, multi-source data fusion models 

have improved the accuracy and stability of power output forecasts in wind farms by 

employing Long Short-Term Memory (LSTM) encoder-decoder architectures combined 

with self-attention mechanisms [13]. 

 In the realm of environmental management, data fusion methods that integrate 

citizen science data with atmospheric dispersion models have enhanced the resolution 

and accuracy of air pollution mapping at the city scale [14]. Furthermore, the fusion of 

satellite data from platforms such as Sentinel-3 SLSTR and Himawari-9 AHI has enabled 

high-resolution monitoring of snow cover dynamics in mountainous regions, 

significantly improving the temporal and spatial precision of snow distribution 

assessments [15]. 

2.5. Data Fusion in Industry and Manufacturing Processes 

 Within industrial processes, data fusion serves as a pivotal tool for optimizing 

operational efficiency and enhancing decision-making. In the context of alumina 

evaporation, multivariate data fusion approaches utilizing Gaussian filter-based 

adaptive noise reduction algorithms have been instrumental in improving production 

stability and process control [16]. Similarly, in the domain of vehicle maintenance, the 

integration of historical maintenance records with fundamental vehicle data through data 

fusion techniques has led to improved predictive accuracy for maintenance scheduling 

and failure detection [17]. 

 Furthermore, data fusion methodologies based on strain energy density have 

demonstrated significant improvements in the accuracy of fatigue life predictions. By 

combining data from torsion fatigue tests with finite element method (FEM) simulations, 

these approaches have proven particularly effective even when working with limited 

sample sizes [18]. Such advancements underscore the versatility and impact of data 

fusion across a range of industrial applications. 

2.6. Data Fusion and Future Perspectives 

 Recent studies underscore the expansive applicability of data fusion, ranging from 

decision support systems to the development of advanced artificial intelligence models 

[19]. Cross-domain data fusion—integrating heterogeneous sources such as geographic 

information, traffic data, social media inputs, and environmental metrics—has gained 

particular relevance in urban computing, where complex, data-rich environments 

demand integrated analytical frameworks [20]. Looking ahead, the integration of large 
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language models (LLMs) and generative artificial intelligence is expected to further 

enhance the effectiveness and adaptability of data fusion techniques, enabling more 

sophisticated and context-aware applications. 

 Despite these advancements, several critical challenges remain. Key among them 

are the need for robust privacy protection mechanisms, the development and adoption 

of standardized data formats and protocols, and improvements in the computational 

efficiency of fusion models. Addressing these issues will be essential for ensuring the 

scalability, trustworthiness, and real-world applicability of data fusion technologies in 

both industrial and societal contexts. 

3. Materials and Methods 

 This section provides a comprehensive overview of the data collection procedures 

from electric screwdriver devices, the integration of data from multiple sources, and the 

analytical methods employed throughout the analysis phase. 

3.1. Data Collection Process 

Three distinct data collection methods were employed in relation to the studied subject:  

 (1) Sensor Data from the Electric Screwdriver—data acquired via sensors 

embedded within the electric screwdriver, including acceleration and gyroscopic 

measurements along the X, Y, and Z axes captured by an Inertial Measurement Unit 

(IMU), as well as voltage and motor current readings;  

 (2) Hand Movement Data from Video Recordings—kinematic data on hand 

motions during screwdriving tasks, obtained through video recordings analyzed using 

Google’s MediaPipe library, which tracked the X and Y axis positions of 21 key points 

corresponding to finger joints;  

 (3) Survey Data from Users—subjective responses collected through an 11-item 

questionnaire designed to assess user perceptions and experiences related to the use of 

electric screwdrivers. 

 

 
Figure 1: Field Data Collection Study 
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Utilizing the aforementioned methods, empirical data were collected from a total of 64 

participants across two distinct manufacturing facilities (Figure 1). 

 

3.2. Ethical Approval and Informed Consent 

 The questionnaire employed in this study was administered as part of a doctoral 

dissertation project, conducted in accordance with the approval granted by the Ethics 

Committee of Istanbul Okan University. The development and distribution of the 

questionnaire adhered strictly to established ethical principles. All participants were 

comprehensively informed about the study's objectives, scope, and data handling 

procedures. Prior to participation, each individual voluntarily provided informed 

consent after reviewing the associated consent documentation. 

 Strict compliance with ethical standards was maintained throughout the research, 

particularly in safeguarding participants’ privacy and ensuring the confidentiality of 

personal data. The collected data were used exclusively for scientific purposes. 

Accordingly, it is affirmed that all procedures were conducted in alignment with ethical 

research standards and institutional guidelines. 

3.3. Digitization and Labeling Methodology of Survey Data 

 Responses obtained from the survey, aimed at determining the hand-tool usage 

experience of participants involved in the data collection study, were converted into an 

objective scoring formula (1) to be utilized in the developed models: 

 

T=D(P+S+K)                                                                            (1) 
 

 The scoring formula was developed based on four primary factors: 

 Hand Tool Usage Experience (D): Indicates whether the participant had prior 

experience using similar hand tools, scored as either 0 or 1 point. 

 Professional Usage Requirement (P): Reflects the necessity of using hand tools as part 

of the participant’s professional responsibilities, assigned 0 or 2 points. 

 Occupational Experience Duration (S): Scored on a scale from 1 to 5 points, 

depending on the participant's total years of industry experience. 

 Seniority Level (K): Evaluated from 0 to 3 points based on occupational roles, such 

as apprentice, operator, technician, or foreman. 

 Based on these four criteria, participants were classified into three experience 

categories: Inexperienced (0–3 points), Less Experienced (4–6 points), and Highly 

Experienced (7 or more points). The scoring model was operationalized through a 
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decision tree methodology (Figure 2), and its reliability was verified through comparative 

analysis against manual classification outcomes. 

 

 
Figure 2: Labeling methodology decision tree 

Based on the constructed decision tree model, the distribution of experience levels among 

the 64 participants from the two factories is as follows (Figure 3): 

• Inexperienced: 24 participants 

• Less Experienced: 21 participants 

• Highly Experienced: 19 participants 

 

 

Figure 3: Experience level distribution graph 



The European Journal of Research and 

Development, 5(1), 2025 https://doi.org/10.56038/ejrnd.v5i1.636  
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 76 

 

The classification conducted through the decision tree algorithm facilitated a consistent 

and objective evaluation of individual operator performance and experience levels. To 

assess the alignment with manual evaluations, the results were compared using Cohen’s 

Kappa coefficient, which yielded a value of 0.85—indicating a high level of agreement 

with human raters. This validation confirms the reliability of the proposed system for 

potential deployment in industrial applications. 

3.4. Analysis of Dataset and Derivation of Feature Relationships 

 The initial dataset compiled for this study comprised 51 attributes. Following a 

detailed analysis, it was determined that using individual position data from multiple 

joints on the same finger introduced redundancy. Instead, a single pair of averaged x and 

y coordinates per finger was deemed sufficient. Accordingly, the coordinate values of the 

joints on each finger were averaged, reducing the dimensionality of the dataset from 51 

to 21 attributes. 

 In the refined dataset consisting of 21 attributes, it was observed that the 

significance and influence of each finger on the model varied. To explore the 

interrelationships among fingers, correlation analyses were performed. The results are 

visualized in Figure 4 as a heatmap, where the color gradient represents the strength of 

the correlations: dark red indicates a strong positive correlation, while dark blue indicates 

a strong negative correlation. 

 
Figure 4: Finger coordinates correlation matrix 

Table 1 presents the statistical properties of the X and Y coordinates for each finger, 

including magnitude, standard deviation, range, mean, and variance values. 

 
Table 1: Finger movement statistics 

Finger Movement Statistics 

 std range mean variance 
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Thumb 130.761490 616.210317 1280.163710 17098.567222 

Index 122.579699 614.491514 1351.283155 15025.782658 

Middle 120.385253 561.494062 1306.822655 14492.609170 

Ring 118.645195 505.533633 1277.258417 14076.682332 

Little 118.138635 507.519428 1248.683668 13956.737136 

 

 To explore the underlying characteristics of finger movements and examine the 

interrelationships among them, Principal Component Analysis (PCA) was conducted. 

Furthermore, a uniqueness analysis was applied to identify distinct movement features 

associated with each finger. The results of the PCA are illustrated in Figure5. 

 

 
Figure 5: PCA analysis 

 The PCA results reveal the structural characteristics underlying finger 

coordination. In the first principal component, the relatively uniform loadings ranging 

between 0.31 and 0.32 suggest a high degree of coordination among fingers during 

fundamental hand movements. The second principal component displays a 

comparatively elevated loading for the thumb (0.35), indicating its prominent role in 

supporting secondary movement patterns. In the third principal component, the distinct 

peak associated with the index finger (0.67) underscores its critical role in executing fine 

motor tasks. 

 In addition to PCA, a uniqueness analysis was performed to assess the distinct 

contribution of each finger. The results of this analysis are presented in Table 2. 

 
 Table 2: Uniqueness analysis 

 

 

 

 

 

 

 An examination of the uniqueness scores reveals that the little finger exhibits the 

highest uniqueness value (0.0253), followed by the index finger (0.0202) and the thumb 

Finger Uniqueness Scores 
(High = More Unique) 

Thumb 0.0172 

Index 0.0202 

Middle 0.0087 

Ring 0.0123 

Little 0.0253 
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(0.0172). In contrast, the middle finger presents the lowest uniqueness score (0.0087), with 

the ring finger registering the second-lowest score (0.0123). 

 The integrated analysis of PCA components and uniqueness scores offers valuable 

insights into the functional organization of hand movements. Although the little finger 

displays a high uniqueness score, its average contribution across the principal 

components suggests that it possesses an independent yet limited range of motion. In 

contrast, the index finger demonstrates both a high uniqueness value and a dominant 

contribution to the third principal component, indicating its key role in executing both 

independent and specialized motor tasks. Conversely, the relatively low uniqueness 

scores of the middle and ring fingers imply a minimal contribution to model 

performance, thereby suggesting the potential for dimensionality reduction through the 

exclusion of features associated with these fingers. 

 Following the analysis of inter-finger movement relationships, the study 

proceeded to investigate potential correlations between the VOLT and 

MOTOR_CURRENT variables within the dataset. Both Pearson and Spearman 

correlation analyses were applied to assess the strength and nature of these associations. 

 
Table 3: Correlation analysis 

Type of Correlation Coefficient P-Value 

Pearson -0.4555 1.926e-60 

Spearman -0.8076 1.359e-267 

 

 As presented in Table 3, the analysis results indicate a statistically significant 

correlation between voltage and motor current. The extremely low p-values obtained 

from both Pearson and Spearman tests confirm that the probability of these relationships 

occurring by chance is negligible, thereby supporting the robustness of the observed 

association. 
Table 4: VIF analysis 

Variable VIF Value 

VOLT 2.471645 

MOTOR_CURRENT 2.471645 

 

 According to the Variance Inflation Factor (VIF) analysis presented in Table 4, the 

VIF values calculated for both VOLT and MOTOR_CURRENT are equal, each measured 

at 2.471645. This outcome satisfies the commonly accepted threshold of VIF < 5, as noted 

in the literature, indicating the absence of a critical multicollinearity problem. 

Consequently, this supports the reliability and stability of parameter estimations 

involving these variables in regression analyses. 
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Table 5: Information gain analysis 

Serial Number Attributes MI_with_VOLT MI_with_CURRENT 

0 Wrist_x 1.418112 0.544725 

1 Wrist_y 0.821802 0.339090 

2 Thumb_x 1.422426 0.564319 

3 Thumb_y 0.691628 0.235470 

4 Index_x 1.500626 0.570305 

5 Index_y 0.785272 0.245580 

6 Middle_x 1.471271 0.575871 

7 Middle_y 0.700679 0.192584 

8 Ring_x 1.501170 0.579924 

9 Ring_y 0.662587 0.215750 

10 Little_x 1.553003 0.605075 

11 Little_y 0.730196 0.303459 

12 X_AC 0.333795 0.347479 

13 Y_AC 0.196286 0.230786 

14 Z_AC 0.308002 0.226366 

15 X_GY 0.290699 0.343400 

16 Y_GY 0.092539 0.200344 

17 Z_GY 0.149488 0.185767 

 

 The information gain analysis results, as presented in Table 5, indicate that the 

system’s behavior is primarily influenced by the X-coordinates of hand positions. This 

suggests that X-coordinate features possess greater discriminatory power relative to 

other variables and play a pivotal role in interpreting system dynamics. Accordingly, 

these parameters should be given priority during the optimization of control algorithms 

and system modeling processes. Emphasizing the effective processing of X-coordinate 

data is therefore essential for enhancing the system’s responsiveness, both in terms of 

accuracy and overall performance. 

 In conclusion, the findings support the feasibility of combining the VOLT and 

MOTOR_CURRENT attributes into a single composite variable, POWER, without 

incurring significant information loss. Representing the system's energy characteristics 

through a unified metric offers notable advantages, including reduced computational 

complexity and enhanced model simplicity via dimensionality reduction. This 

transformation contributes to more efficient system modeling and performance 

optimization. 

 Based on the outcomes of the aforementioned analyses, the following 

modifications were implemented to refine the dataset: 

• The attributes Middle_x, Middle_y, Ring_x, and Ring_y—identified as having 

minimal contribution to the model—were excluded. 
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• The attributes VOLT and MOTOR_CURRENT were consolidated into a newly 

derived attribute, POWER, computed using Equation (2): 

 

𝑃𝑂𝑊𝐸𝑅 = 𝑉𝑂𝐿𝑇.MOTOR_CURRENT                                       (2) 

 

 As a result of these adjustments, the original dataset comprising 51 attributes was 

reduced to 16 attributes, thereby enhancing its analytical efficiency and suitability for 

modeling. 

4. Experimental Results and Technical Challenges 

4.1. Experimental Results 

 In the development of the labeling methodology for this study, various data 

processing techniques were employed, including Decision Tree, Logistic Regression, 

Support Vector Machine (SVM), Random Forest, and Neural Network algorithms. 
 

Table 6: Accuracy of the methods 

1. Methods 

Accuracy 
Percentage 

Standard 
Deviation 

Confidence 
Interval 

Decision Tree 84.85 0.10 %75.83 – %93.69 

Logistic 
Regression 

69.70 0.16 %55.73 – %83.32 

Support Vector 
Machine 

66.67 0.19 %49.65 – %83.69 

Random Forest 69.70 0.23 %48.90 – %90.15 

Neural Network 72.73 0.20 %54.76 – %90.00 

 

 Table 6 summarizes the average accuracy, standard deviation, and confidence 

interval percentages for the implemented models. Among the evaluated algorithms, the 

Decision Tree model demonstrated the highest reliability, achieving an accuracy rate of 

84.85%, accompanied by a low standard deviation and a narrow confidence interval. 

These metrics indicate the model’s robustness and consistent performance across the 

dataset. 

 According to the results, the Neural Network method achieved the second-highest 

accuracy rate at 72.73%. This relatively high performance reflects the capability of deep 

learning models to capture and learn complex patterns within the data. Logistic 

Regression and Random Forest models exhibited comparable accuracy rates, each at 

69.70%. In contrast, the Support Vector Machine (SVM) model recorded the lowest 

accuracy rate among the tested algorithms, with a value of 66.67%. 
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 These findings provide valuable insights into the comparative performance of 

various classification methods applied to the dataset. Prior to finalizing the Decision Tree 

model—which achieved the highest accuracy—a cross-validation procedure was 

conducted to assess the risk of overfitting. The model yielded an average accuracy of 70% 

across validation folds, with noticeable performance fluctuations, suggesting potential 

overfitting and limitations related to the dataset’s relatively small size. 

 To address these concerns, additional regularization techniques were employed. 

Specifically, Cost Complexity Pruning was applied in conjunction with Grid Search 

Cross-Validation (5-fold) to optimize model complexity and enhance generalization. This 

refined approach led to an improved accuracy of 82.38%, demonstrating a significant 

reduction in overfitting and increased stability of the model across different data subsets. 

 An additional error analysis was performed to identify conditions under which 

the Decision Tree model produced incorrect predictions. The analysis revealed that 

Features 7, 10, and 11 were significant contributors to misclassification. In particular, the 

model exhibited a tendency to mislabel instances when Feature7 had a value of 0. 

Furthermore, the low variance observed in Feature10 hindered the model's ability to 

generalize effectively. Similarly, elevated values in Feature11 were associated with an 

increased rate of prediction errors, suggesting sensitivity to this feature’s distribution. 

4.2. Technical Challenges 

 One of the primary challenges encountered in this study was the lack of an existing 

dataset, which necessitated the implementation of field-based data collection protocols. 

Securing the necessary permissions from manufacturing facilities constituted a major 

obstacle during the research process. Moreover, the limited availability of time for 

conducting on-site studies, coupled with restrictions on the number of eligible 

participants, further complicated the data acquisition phase. 

5. Findings 

 According to the research findings, among the machine learning algorithms 

evaluated, the Decision Tree method exhibited the highest and most consistent 

performance, achieving an accuracy rate of 84.85% with low variance. This outcome 

underscores not only the theoretical effectiveness of the model but also its practical 

advantages for industrial applications. The inherently interpretable structure of Decision 

Trees supports the development of decision-support systems within production 

environments, enhancing their applicability in domains such as quality control, 

workforce planning, and maintenance strategy optimization. Furthermore, the method’s 

low computational cost and fast prediction capabilities make it particularly well-suited 

for real-time industrial applications. Therefore, these results provide valuable insights 
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into the potential for integrating the Decision Tree approach into large-scale industrial 

implementations. 

6. Conclusions and Future Work 

 In this study, a series of analyses were conducted to integrate data collected 

through multiple field-based methods and to identify the most relevant attributes for 

machine learning applications. The original dataset, initially composed of 51 attributes, 

was reduced to 16 attributes through dimensionality reduction techniques, rendering it 

more suitable for the subsequent modeling stages. 

 As part of the data labeling methodology, several classification algorithms were 

evaluated, among which the Decision Tree model was selected due to its superior 

accuracy. 

 For future research, it is recognized that the current dataset—comprising data 

from only 64 participants—may be insufficient to fully leverage the potential of machine 

learning models. To address this limitation, synthetic data generation via data 

augmentation techniques is planned to expand the dataset. Building on this enriched 

dataset, a machine learning-based predictive model will be developed to estimate users' 

experience levels in operating hand tools, further advancing the practical applications of 

the proposed approach. 
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