
 journals.orclever.com/ejrnd

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 49

Research Article

Enhancing Workflow Efficiency in Yocto Project: A

Build Tool for Fetch Error Detection and Fixing

Huseyin KARACALI1*, Nevzat DONUM2*, Efecan CEBEL3*

1 TTTechAuto Turkey, Software Architect, Orcid ID: https://orcid.org/0000-0002-1433-4285, E-mail:

huseyin.karacali@tttech-auto.com
2 TTTechAuto Turkey, Embedded Software Engineer, Orcid ID: https://orcid.org/0000-0002-8293-8267, E-

mail: nevzat.donum@tttech-auto.com
3 TTTechAuto Turkey, Embedded Software Engineer, Orcid ID: https://orcid.org/0000-0002-2027-0257, E-

mail: efecan.cebel@tttech-auto.com
* Correspondence: efecan.cebel@tttech-auto.com

(First received January 18, 2024 and in final form April 12, 2024)

Reference: Karacalı, H., Donum., N., Cebel, E. Enhancing Workflow Efficiency in Yocto Project:

A Build Tool for Fetch Error Detection and Fixing. The European Journal of Research and

Development, 4(2), 49-76.

Abstract

Yocto Project is conceived as an initiative to provide developers with a flexible and efficient environment

for preparing customized embedded Linux distributions. However, while bestowing upon developers the

flexibility to create bespoke embedded Linux distributions, this project introduces various challenges. These

challenges transcend mere technical proficiency, influencing critical barriers that impact the successful

completion of the project. These difficulties encompass the steep learning curve of the Yocto Project, the

intricacies of complex configuration files, and the management of dependencies. Developers are compelled

to navigate through these intricacies within the project, concurrently encountering fetch errors arising from

the continuous evolution of external sources. These fetch errors not only disrupt the flow of the project but

also exhibit sensitivity to alterations in access to external resources and network-related issues.

Consequently, developers find themselves expending time and effort in grappling with these challenges.

The fetching process within the Yocto Project plays a pivotal role in the creation of bespoke distributions,

retrieving essential external source code crucial for the development process. Fetch errors can stem from

various sources, including alterations in upstream repositories and network issues, potentially hindering

the progression of the project if not promptly resolved. However, the unpredictable nature of fetch errors

necessitates a comprehensive solution for a seamless workflow. In this context, as a solution to these

challenges, an innovative tool has been developed within the scope of this project. This tool aims to

automatically detect and resolve fetch errors encountered during the preparation of custom embedded Linux

distributions with the Yocto Project. The tool proficiently detects real-time internet interruptions during

fetch processes and automatically initiates reattempt procedures in case of transient outages. This feature

mailto:efecan.cebel@tttech-auto.com

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 50

ensures the continuous progression of the project. Additionally, the tool scrutinizes complex recipe errors

within the Yocto Project, automatically rectifying issues encountered during fetch operations. This

streamlined approach expedites error resolution without necessitating manual intervention from

developers. The tool systematically analyzes the health of URLs employed in fetch processes, identifying

potential errors in the utilized URLs. Furthermore, it evaluates internet connectivity issues arising during

fetch operations within the Yocto Project. By detecting various scenarios such as DNS problems, connection

timeouts, and packet loss, the tool provides developers with comprehensive reports, enabling swift diagnosis

of internet connectivity issues. As a result, this tool successfully overcomes the existing challenges in

resolving fetch errors within the Yocto Project. Furthermore, the tool can be extended to automatically

correct not only fetch errors but also general Yocto errors. These enhancements contribute to the tool

providing a more effective and versatile solution. In addition, incorporating CI/CD integration into the tool

can significantly improve the quality of work. CI/CD enables automated testing and deployment of code

changes, ensuring software reliability and optimizing deployment processes.

Keywords: Yocto Project, Embedded Linux, Custom Embedded Linux Distribution, Fetch Errors, Yocto

Project Learning Curve

1. Introduction

Yocto Project is an open-source collaborative initiative hosted by the Linux Foundation.

It provides developers with the capability to manage the complexity of customized

embedded systems and create Linux distributions tailored to specific needs [1]. The

fundamental objective of the project is to offer developers extensive configurational

flexibility and enable the development of reliable, scalable, and customizable embedded

Linux solutions that meet industry standards. The Yocto Project relies on foundational

components such as the OpenEmbedded Build System, the BitBake compilation engine,

and the OpenEmbedded-Core layers, providing users with a comprehensive toolset to

establish a robust infrastructure for creating customized distributions [2]. Particularly in

the automotive sector, where intricate embedded systems demand specialized solutions,

the flexible and modular structure of the Yocto Project holds significant importance.

Yocto Project provides developers with extensive configuration flexibility; however, it

comes with notable challenges. The learning curve of the project is steep, requiring users

to invest time and effort in coping with its complexity. The learning process of Yocto

Project, particularly due to the comprehensiveness of the extensive toolset, including

fundamental components like the complex OpenEmbedded Build System, BitBake

compilation engine, and OpenEmbedded-Core layers, is time-consuming [3]. The

learning curve of the project is just one facet; developers also face challenges in technical

aspects such as complex configuration files, dependency management, and fetch errors

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 51

arising from continuous data retrieval processes from external sources. These difficulties

emerge as critical obstacles affecting the successful completion of the project.

Fetch errors are commonly defined as errors that arise during data retrieval processes

from external sources. These errors encompass various obstacles encountered by the

project when fetching data from external sources. Fetch errors are rooted in factors such

as network issues, data inconsistencies arising from changes in external sources, or faulty

URLs. These errors draw attention, particularly due to the project's dependency on

external sources. In the development environment, where the project fetches external

source codes, these errors can manifest in a broad spectrum, ranging from interruptions

caused by fluctuations in network conditions to data inconsistencies stemming from

changes in repository structures. In this context, the resolution of fetch errors becomes a

critical element for the healthy creation of customized embedded Linux distributions.

These errors significantly impact the project's workflow, necessitating developers to

invest additional effort for the successful completion of the project.

The complexities of the Yocto Project, including the steep learning curve and an extensive

toolset, further complicate the resolution of fetch errors. Developers, interacting with

fundamental components such as the complex OpenEmbedded Build System, BitBake

compilation engine, and OpenEmbedded-Core layers within the project's intricate

structure, require profound technical knowledge not only for managing fetch errors but

also for general system administration [3].

Developers find themselves not only dealing with fetch errors but also needing in-depth

technical expertise in overall system management while navigating the intricate structure

of the project, which includes components like the OpenEmbedded Build System, BitBake

compilation engine, and OpenEmbedded-Core layers [3]. The complexities introduced

by these factors add an additional layer of difficulty to the resolution of fetch errors.

In the context of this study, the developed tool focuses on the automatic detection and

resolution of fetch errors encountered while creating custom embedded Linux

distributions within the Yocto Project framework. In this regard, the tool is designed to

address various challenges that may arise during the process of fetching data from

external sources.

The detection of momentary internet interruptions during fetch processes is a crucial

feature that forms the foundation of the tool's functionality. This enables automatic retry

operations in case of temporary interruptions, ensuring the continuous progress of the

project. Additionally, the tool analyzes errors in the complex recipes of the Yocto Project

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 52

and automatically corrects issues encountered during fetch operations. This allows for

the swift resolution of errors without requiring manual intervention.

The tool verifies the health of the URLs used in fetch processes and detects potential

errors in the URLs employed. Furthermore, it conducts a detailed analysis of internet

connectivity issues that may occur during fetch operations within the Yocto Project. By

identifying various scenarios such as DNS problems, connection timeouts, and packet

loss, the tool provides developers with comprehensive reports.

This tool stands out as a robust solution developed to address fetch errors, aiming to

optimize the Yocto Project development process. It is designed not only to tackle existing

issues but also to anticipate potential situations of such errors in the future, serving as a

solution to enhance the efficiency of the Yocto Project development workflow.

2. Materials

2.1. CPU

Embedded systems, designated for specific purposes, differ from general-purpose

computer systems due to their optimized design for efficient operation within

constrained resources. The CPUs in embedded systems are tailored to integrate features

such as compact size, low power consumption, and built-in memory, prioritizing

attributes like rapid response times and energy efficiency over high clock speeds [4].

Despite potentially lower clock speeds, these CPUs excel in delivering superior

performance tailored to their designated tasks [5]. The variety of CPU architectures

available for embedded systems significantly influences their design and functionality,

with the selection of a particular architecture driven by the specific requirements and

applications of the embedded system [5].

In this study, the NXP i.MX 8QuadMax CPU has been utilized as the central processing

unit. The NXP i.MX 8QuadMax is a CPU designed for powerful system integration,

particularly tailored for embedded applications. It features a heterogeneous multicore

architecture, comprising four Arm Cortex-A72 and four Arm Cortex-A53 cores. This

combination of cores is engineered to efficiently handle high-performance and energy-

efficient tasks [6]. In terms of graphics processing capabilities, the NXP i.MX 8QuadMax

incorporates a GC7000XSVX GPU, supporting 4K resolution videos and delivering high

performance for embedded graphics applications [6]. This CPU provides an extensive

range of connectivity options, including dual PCIe interfaces, dual Gigabit Ethernet, and

various other data communication ports, showcasing the i.MX 8QuadMax as an

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 53

expandable and connectivity-friendly solution [6]. The security features of the NXP i.MX

8QuadMax encompass a security infrastructure that complies with industry standards,

making it a preferred choice, especially in security-focused embedded applications.

The block diagram of the NXP i.MX 8QuadMax processor is illustrated in Figure 1.

Figure 1: i.MX 8QuadMax CPU block diagram

2.2. Embedded Linux

Embedded Linux refers to an OS where the Linux kernel and associated software

elements are tailored to fulfill the specific requirements of embedded systems. Utilized

in embedded devices, the Linux kernel facilitates communication with hardware,

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 54

oversees processes, and manages other system resources. Typically deployed in

embedded systems with specialized hardware interfaces and constrained memory and

processing capabilities, Embedded Linux offers several advantages to developers [7]. As

an open-source OS, Linux allows developers access to the source code for customization

as needed. Supported and consistently enhanced by a large open-source community, its

open nature reduces licensing expenses and facilitates seamless integration into

commonly used hardware and software components.

In this investigation, the preference was for Embedded Linux as the chosen operating

system. Embedded Linux boasts numerous advantages for facial recognition

applications. Its robust processing capabilities ensure effective execution of intricate

mathematical calculations. Extensive source code and tool support add convenience for

developers, enabling swift prototyping, testing, and application development.

Figure 2: Embedded Linux architecture

2.3. Yocto Project

The Yocto Project is an open-source initiative providing a robust infrastructure for

preparing custom embedded Linux distributions and offering developers extensive

configurational flexibility [1]. The foundational element of this project is its layer

structure, which presents developers with the tools necessary to build intricate and

customizable Linux solutions. This layer structure amalgamates various components of

the Yocto Project, adopting a modular approach that ensures flexibility and extensibility.

The fundamental milestones of the Yocto Project are illustrated in Figure 3.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 55

Figure 3: Fundamentals milestones of Yocto Project

The foundational layers of the Yocto Project, known as OpenEmbedded-Core layers,

constitute a series of layers encompassing general system components [8]. These layers

provide essential building blocks and offer developers a modular toolkit containing

packaging systems, build environments, and fundamental functionality.

Figure 4: OpenEmbedded arhitecture workflow

The layer structure of the Yocto Project interacts with the potent BitBake compilation

engine. BitBake empowers developers with capabilities such as providing compilation

instructions, managing dependencies, and integrating components [9]. Recipes used in

the Yocto Project define how a package should be compiled and integrated. Organized

within the layer structure, these recipes grant developers the flexibility to define the

necessary steps to customize their systems [9].

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 56

Figure 5: Yocto Project layered framework

Poky, the core distribution of the Yocto Project, holds a significant position within the

layer structure [10]. Initially serving as a functional Linux distribution, Poky allows

developers to initiate their journey with the Yocto Project swiftly [10]. This distribution

includes a set of pre-configured recipes, providing developers with a foundational

platform that can be quickly integrated into their projects.

Figure 6: Yocto Project basic working diagram

The Yocto Project's layer structure permits developers to create their own layers and

customize existing ones [11]. This capability enables developers to add functionality

specific to their projects and take full advantage of Yocto's extensible framework.

The layer structure not only forms the core of the Yocto Project but also provides

developers with the ability to customize and extend functionalities. This framework

offers a powerful and flexible foundation for developers aiming to create bespoke

embedded Linux solutions.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 57

2.4. Qt Creator

A powerful integrated development environment (IDE) known as "Qt Creator" has been

employed as a significant tool for software developers in this study. Developed by The

Qt Company, this tool serves officially as an IDE for the Qt application framework [12].

Qt Creator is specially designed to facilitate the development, debugging, and

deployment of Qt-based applications, offering a comprehensive set of features.

The IDE provides a user-friendly environment for coding in various programming

languages, including C++, QML (Qt Meta-Object Language), and Python. It incorporates

advanced code editing features such as syntax highlighting, auto-completion, and

context-awareness, enhancing the efficiency and accuracy of the coding process [13].

Equipped with a robust debugger, Qt Creator simplifies the identification and resolution

of software errors.

The integrated Qt Quick Designer streamlines the development of QML and Python-

based applications, providing a visual approach to design and prototyping. Supporting

version control systems like Git, the IDE enables effective code management and

collaboration-focused development [14]. Its extensibility through plugins allows

developers to enhance functionality according to project requirements.

In conclusion, Qt Creator stands out as a powerful and flexible IDE, providing developers

with the necessary tools for seamless development, debugging, and deployment

processes of Qt-based applications. Its integration with the Qt framework and support

for various programming languages make it a valuable asset in the software development

process.

2.5. PyQt 6

PyQt serves as a robust framework for constructing desktop applications, rooted in the

Python programming language. Functioning as a set of Python bindings for Qt, a widely

employed cross-platform application and UI development framework, PyQt seamlessly

melds the simplicity of Python with the potent features of Qt. This amalgamation

provides developers with a flexible toolkit to craft intricate graphical user interfaces.

Given PyQt's nature as a Python library, it aligns seamlessly with the project's utilization

of Python as its primary programming language. This alignment ensures a cohesive

development experience, leveraging Python's readability and adaptability [15].

The framework chosen for the development process of the tool created within the scope

of this study is PyQt 6, owing to its rich features and user-friendly design.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 58

3. Method

The tool developed within the scope of this study aims to effectively identify and resolve

fetch errors encountered during the creation process of customized embedded Linux

distributions with the Yocto Project. Fetch errors typically encompass issues arising when

retrieving data from external sources, causing interruptions in the project's workflow.

These errors, stemming from factors such as changes in upstream repositories, network

issues, and the continuous evolution of external sources, can complicate the process of

creating customized distributions.

The developed tool provides a solution for overcoming these challenges, targeting

developers. The tool automatically detects and resolves fetch errors, enabling the reliable

and consistent creation of customized Linux distributions under the Yocto Project. This

not only enhances the project's continuity but also allows developers to focus their time

and efforts on more productive and efficient areas, rather than grappling with such

issues.

The tool goes beyond merely identifying fetch errors; it also possesses the capability to

parse and analyze errors originating from various sources. This provides developers with

the opportunity to intervene more rapidly and effectively in specific issues. Additionally,

by monitoring fetch processes, the tool offers a detailed view to determine the origins of

errors, allowing developers to understand and resolve problems more comprehensively.

In conclusion, this research demonstrates that the developed tool makes a significant

contribution by effectively addressing fetch errors encountered by Yocto Project users

during the creation of customized Linux distributions.

The developed tool first checks the internet connection when the operation starts. The

primary purpose of this step is to determine the presence of an internet connection for

the tool to fetch data from external sources and maintain its functionality. Initially, to

perform this check, the tool attempts a connection targeting the IP address 8.8.8.8. This

IP address, provided by Google, generally represents a widely used and globally

accessible Domain Name Server (DNS). The connection attempt directed to this IP

address is utilized to determine whether a general internet access is available. Querying

Google's DNS servers in this manner is a common practice to verify the existence of

internet access. Checking the internet connection holds crucial significance for the tool to

fetch data from external sources and sustain its functionality. This verification is a

fundamental requirement for the tool to access up-to-date data and execute its operations

seamlessly.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 59

If the connection attempt to the IP address 8.8.8.8 is successful, indicating that internet

access is established, the next step involves checking the DNS servers. DNS, Domain

Name System, is a structure that translates domain names on the internet into IP

addresses. This check aims to ensure the accuracy and integrity of data obtained from

external sources by providing access to correct and reliable DNS servers. The verification

of DNS servers holds critical importance, especially for resolving the URLs contained in

recipes within the Yocto Project. When fetching data from external sources to create

custom embedded Linux distributions, Yocto Project often retrieves this data through

URLs specified within recipes. These URLs specify the correct versions, sources, or

dependencies of packages and components. DNS servers are responsible for resolving

the IP address associated with a domain name in the network. In other words, resolving

a URL specified in a recipe involves the process of finding the IP address connected to

that URL. Therefore, the availability of correct and reliable DNS servers is crucial for

recipes to retrieve accurate and up-to-date information when fetching data from external

sources.

If the developed tool detects any issues during the checks for internet connection and

DNS servers, it generates a PDF report to notify the developer about the identified

problems. The generated PDF report includes detailed information, encompassing

possible internet connection issues or any problems related to DNS servers. This

approach assists developers in swiftly identifying and resolving issues, ensuring that

necessary corrections for the effective operation of the tool can be easily implemented.

The flowchart illustrating the Internet connection and DNS server check is presented in

Figure 7.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 60

Figure 7: Internet connection DNS server check flowchart

After completing the internet connection and DNS server checks, the tool proceeds to

verify the sources folder. This verification aims to ensure that all required source files for

the project are complete and accurate. If the "sources" folder is not found, the tool reports

this situation to the developer. This step is crucial to maintain the integrity of the project's

source files and, consequently, to create a correct Linux distribution. The sources folder

within the Yocto Project is a critical directory containing all external source files used by

the project. This folder serves as a central location where all packages, components, and

source files necessary for creating a custom embedded Linux distribution are stored.

Yocto Project utilizes this "sources" folder to configure, compile, and build a custom

Linux distribution.

Sources directory within the Yocto Project contains Bitbake recipe files for various

components used to create customized Linux distributions. These files, denoted with the

".bb" extension, encompass comprehensive recipes that manage the processes of

compiling, configuring, and installing packages. The ".bb" files contain a metalanguage

interpreted by Bitbake, Yocto's package management system.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 61

Each Bitbake recipe file provides extensive information, ranging from the method of

downloading source code for a package to compilation steps, determination of

dependencies, and application of configuration settings. These files enable the project to

recognize and integrate packages into the system. Furthermore, Bitbake recipe files

include crucial metadata such as a package's license information, version number, and

repository address from which the source code is obtained. This ensures the license

compliance and sustainability of the created Linux distribution.

The complexity of Bitbake recipe files varies depending on the specific requirements of

each package and the features targeted by the project. These files play a central role in the

creation of a customized Linux distribution, facilitating the proper integration of

packages and the configuration of the system according to the desired specifications.

Sources directory serves as a repository for patch files utilized to apply customizations to

the source code of packages used in the project. These patch files embody alterations such

as modifying specific configurations, rectifying errors, or introducing new features to the

source code. Typically denoted with the ".patch" extension, these files are applied by

Bitbake recipe files during specific compilation steps.

This directory also houses the original source code files for each component used in the

project. These files represent the primary source codes provided by package developers

and are utilized by Bitbake during the compilation process.

Within the sources directory of the Yocto Project, configuration files used for compiling

and configuring packages are present. These files dictate which features will be enabled

or disabled during the compilation process of a specific package. Additionally, they

contain critical settings that determine how a package will interact with other

components in the system.

In this context, the presence of the sources folder in the Yocto Project workspace has been

examined to verify its existence. This process has been executed utilizing the "os" module

in Python, which provides access to file system and operating system functionalities. The

initial step of the function involves determining the full path of the Yocto Project

workspace, which is stored in a variable. Subsequently, the "os.path.join()" function is

employed to create the full path of the "sources" folder by combining the Yocto Project

workspace's full path with the "source" folder. This results in the generation of a path that

facilitates access to the sources folder within the working directory.

Following this, the existence of the "sources" folder within the created path is verified

using the "os.path.exists()" function. If the sources folder is present, the "os.path.isdir()"

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 62

function is employed to confirm whether this folder is indeed a directory. If affirmed, a

notification message is displayed, indicating the presence of the "sources" folder in the

Yocto Project workspace. In the event of a negative outcome, a warning message is

presented, indicating that the "sources" folder could not be found.

These procedures encompass the technical steps utilized to assess the status of the

"sources" folder in the Yocto Project developer's working directory and report this status.

Additionally, a fundamental flowchart illustrating the verification of the sources folder

is visualized in Figure 8.

Figure 8:Verification of the sources folder flowchart

These procedures encompass the technical steps utilized to assess the status of the

"sources" folder in the Yocto Project developer's working directory and report this status.

Additionally, a fundamental flowchart illustrating the verification of the sources folder

is visualized in Figure 8.

After the verification of the sources folder, the BitBake build engine is invoked for the

build process. BitBake is a compilation and task execution tool specifically designed for

embedded systems, developed for the Yocto Project. Serving as the core build engine for

creating custom Linux distributions, BitBake manages tasks, dependencies, and

metadata. It relies on recipes that define how packages, components, and the entire

distribution should be compiled. These recipes are typically written in a specific language

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 63

and provide detailed instructions on tasks such as fetching source code, applying patches,

compiling, and packaging.

Tasks represent individual steps required to compile a component, and each recipe

consists of a series of tasks. BitBake ensures that these tasks run in the correct order,

taking their dependencies into account. Utilizing metadata, BitBake gathers information

about the compilation environment, target architecture, and package dependencies. This

metadata plays a crucial role in making informed decisions during the compilation

process.

The imx-image-full image has been compiled for the NXP i.MX 8QuadMax platform

using the "bitbake imx-image-full" command. This image is specifically built to integrate

an open-source Qt 6 framework with advanced Machine Learning capabilities. It is

important to note that these images are exclusively supported for i.MX System-on-Chip

(SoC) configurations equipped with hardware graphics. The utilization of Qt 6 and

Machine Learning features enhances the image's capabilities, making it well-suited for

applications requiring graphical interfaces and advanced computational tasks on the

specified i.MX SoC hardware.

During the build process of the imx-image-full image, initiated by BitBake, a series of

packages are downloaded. These download operations encompass resolving and

fetching the required packages, dependencies, and components. Each package is selected

to meet the intended features and functionality of the image, and it is retrieved from the

relevant source repositories. Throughout this process, specific components, including Qt

6 and Machine Learning features, along with hardware graphics and other dependencies,

are downloaded to fulfill the specified requirements. The download operation is

automatically executed through the package management systems of the Yocto Project

and BitBake's recipe files. This ensures that the imx-image-full image has all the necessary

components, facilitating the creation of a embedded Linux distribution tailored to specific

features.

After the build process is completed, the tool developed within the scope of this study

meticulously examines the build logs. In case a fetch error is detected in the logs, the

initial step involves extracting the package name causing this error from the logs. This

extraction process is crucial to precisely identify the package affected by the fetch error,

enabling a targeted and effective resolution process. Build logs maintain a comprehensive

record of the entire build process, and the tool's analysis of these logs plays a pivotal role

in ensuring the integrity and success of the build process. The parsing mechanism is

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 64

thoughtfully designed to extract relevant information related to the fetch error,

facilitating subsequent debugging and resolution efforts.

When a fetch error is detected for a specific package, the process of resolving the fetch

issue involves a detailed procedure. Initially, the tool determines the package name

causing the error by parsing the package log file. Subsequently, the developed tool

performs a reevaluation of internet connectivity and DNS server status. If no internet

connection issues are identified, the procedure continues.

At this stage, the tool, for the package where the fetch error is detected, executes the

"cleansstate" command within the specialized BitBake build mechanism. This command

clears all temporary files in the cache of a specific package, ensuring that the package has

a clean state. This step is crucial to resolving the fetch error with a clean build state.

In particular, the command "bitbake -c cleansstate <package_name>" is employed to

delete all cache files related to the package with the fetch error. This action clears

temporary data from previous compilation stages, allowing the package to be recompiled

without being affected by previous errors. This meticulous and detailed cleanup process

establishes a clean starting point for the package, serving as a preparatory step for

resolving the fetch error.

In this stage, a comprehensive PDF report is generated encompassing all encountered

errors during the build process. If no errors are detected in the build log file, a meticulous

examination of the imx-image-full image file takes place to ensure its proper generation.

The integrity and correctness of the image are thoroughly verified, and the findings are

presented to the developer through a detailed PDF report.

The basic representation of this process is illustrated in the flowchart shown in Figure 9.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 65

Figure 9: Detect and parse fetch error flowchart

After the removal of all cache files using the "bitbake -c cleansstate <package_name>"

command for the package where the fetch error is detected, the process of resolving the

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 66

fetch error begins. In this stage, once again, the first step involves checking internet

connectivity and DNS server status. In the case of no connectivity issues, the BitBake

build engine is initiated, and another attempt is made to build the imx-image-full image.

Build process concludes, he generated build log file undergoes a detailed examination by

the tool. The absence of any errors in the log file indicates that the tool has successfully

addressed the encountered fetch error. The created image file is subjected to a thorough

verification process. This verification process involves various steps to ensure the

integrity and accuracy of the imx-image-full image. Upon the completion of these steps,

the obtained results are presented to the developer in the form of a PDF report. This

report confirms the successful completion of the build process and verifies that the

generated image file aligns with the expectations.

During the examination phase of the build log file by the tool, if a fetch error is detected,

and this error is not in the package where a fetch error was previously identified, the tool

initiates a repetition of all these stages to rectify the fetch error. Upon identification of a

fetch error during the scrutiny of the build log file by the tool, in the scenario where this

error is not associated with a package previously marked with a fetch error, the tool

systematically repeats all relevant stages to address and resolve the fetch error. This

iterative process ensures a comprehensive and targeted approach to rectifying the

specific issues identified within the build log, contributing to the overall enhancement of

the build integrity.

In the examination phase of the log file, if a fetch error is detected for the same package,

the tool activates an alternative method to resolve the fetch error. This alternative method

relies on recipe inspection. In other words, the recipe file, which contains the compilation

instructions for the package experiencing the fetch error, is thoroughly examined. The

recipe file defines the compilation process and dependencies for a specific package.

Recipe inspection involves a detailed examination of the instructions necessary for

downloading, compiling, and integrating the package correctly. Therefore, the

identification and correction of errors in the recipe file are a crucial step for resolving the

fetch error. This method aims to provide a more comprehensive solution by delving into

the origin of the fetch error.

Before initiating the initial build, the developer creates an environment. During the

creation of this environment, the necessary host packages are installed, followed by Git

configurations. The Repo tool is then installed. The repo tool manages Git repositories

specified in a manifest file. The manifest file defines which repositories the project will

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 67

use, and which branches to track. This approach is particularly useful when dealing with

complex structures in large projects with a series of dependencies, as it allows for the

centralized control of all dependencies using a single tool. Through this tool, updating

different components of the project, transitioning to different versions, or making

changes in a branch becomes more streamlined. Additionally, for projects involving

multiple repositories, it facilitates synchronization and update processes, ensuring

integrity.

At this stage, the developer employs the Repo tool to download and synchronize Yocto

Project's and NXP's provided sources.

After the developer completes the process of creating the environment and downloading

the sources, when they run the tool developed within this project to initiate the build

process, the tool initially backs up the base state of the sources folder under the name

"backup_sources." The flow of this operation is illustrated in Figure 10 below.

Figure 100: Prepare environment and backup sources for Yocto image build

The backup process of the base sources folder is of great significance for the recipe-based

fetch error resolution method. In the case of a fetch error detected in the same package

after the cleansstate process, the tool parses the SRC_URI variable within the package's

recipe file. The SRC_URI variable in recipes is a crucial parameter that defines the sources

specified in a Yocto recipe file. This variable specifies the source files of a component

related to a recipe and typically includes a URL specified using protocols such as tar.gz,

tar.bz2, git, or similar. The primary purpose of SRC_URI is to enable Yocto to fetch these

source files accurately during the compilation process. This variable is used when

determining the sources to be downloaded for a package, and these sources can include

compressed archive files, git repositories, remote URLs, or local file paths. Yocto utilizes

the information specified in SRC_URI to fetch the necessary files. The SRC_URI variable

plays a significant role in the backup process, particularly in the recipe-based approach

for fetch error resolution, following the cleansstate operation.

The tool parses the URL assigned to the SRC_URI variable and, upon completion of the

parsing process, checks the accessibility of the obtained URL. For this verification, the

requests library in Python is employed, enabling the sending and processing of HTTP

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 68

requests. Using the “requests.get” function, a GET request is sent to the parsed URL, and

subsequently, the HTTP response status is examined. If the HTTP status code is 200, it

signifies that an HTTP response has been successfully processed, indicating the

successful completion of the client's request. This status code is particularly utilized when

handling HTTP GET requests, denoting that the server has successfully located and

returned the requested resources. The HTTP status codes scrutinized within the tool are

comprehensively outlined in Table 1.

Table 1: Checked HTTP status codes and their descriptions

HTTP Status Code Description

200 The request has been successfully completed.

204
The request was successful, but the server did

not return any content in the response.

404 The requested resource could not be found.

500
A server-side error occurred, and the request

could not be successfully processed.

The parse of the SRC_URI variable and the HTTP status query of the parse URL is

basically shown in Figure 11 below.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 69

Figure 111: SCR_URI parsing and URL HTTP status code check flowchart

In case there is no error code related to the URL, the recipe file of the package in the

backup sources folder is compared with the one in the current workspace. During this

comparison, if any difference is detected, the base recipe is transferred from the backup

sources to the workspace. After this transfer, the build process is repeated. Once the build

process is completed, the build log is examined, and any errors are analyzed by the tool.

If an error code related to the URL is received, the recipe file of the package in the backup

sources is compared with the one in the current workspace. The SRC_URI variables of

these two recipes are compared. If there is a difference in these variables, the recipe from

the backup sources with the differing variable is transferred, and all build stages are

repeated. If, after these steps, the fetch error has been resolved, these processes and the

results are documented in a PDF report. If the fetch error persists after the steps are

repeated, this situation is presented to the user in detail in the PDF report.

The general operational process and stages of the tool developed within the scope of

this study are illustrated in the block diagram depicted in Figure 12.

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 70

Figure 122: General operational process and stages block diagram

4. Results

The Embedded Linux domain is standardizing around the Yocto Project as the best

integration framework for creating reliable embedded Linux products. The Yocto Project

efficiently reduces the time required for the development and maintenance of an

embedded Linux product, enhancing its reliability and robustness by leveraging proven

and tested components [16]. The Yocto Project, an open-source collaborative initiative

helping developers create custom Linux-based systems, has evolved significantly over

the last 12 years to meet the requirements of its community. The project continues to lead

in build system technology with field advances in build reproducibility, software license

management, SBOM compliance and binary artifact reuse. In an effort to support the

community, The Yocto Project announced the first Long Term Support (LTS) release in

October 2020. The LTS release has been extended and the lifecycle has been extended

from 2 years to 4 years as standard. The support periods of the releases by date are shown

in Figure 13.

Figure 133: Yocto Project release staircase

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 71

The Yocto Project facilitates the incorporation of various architectures within a unified

build tree, which encompasses multiple layers to enhance development flexibility. The

layered architecture in the Yocto Project provides an organized approach to managing

the filesystem and system components, enabling developers to concentrate on individual

layers at their own pace. Through priority ordering, layers can be integrated, allowing

higher-priority layers to supersede and modify settings. The extensive user base and

community support of the Yocto Project make it convenient for developers to receive

ongoing assistance from peers. Being an open-source initiative, developers have the

liberty to select and customize layers without concerns about potential shifts in software

vendor strategies [17].

However, despite these benefits, Yocto has a steep learning curve [18]. When issues arise

in Yocto-based images, it necessitates dedicated efforts to precisely identify the root cause

of the problem. Configuring settings accurately can be time-consuming. The terminology,

including layers, recipes, and other elements, might initially be perplexing [19].

Yocto Project has developed GUI-based tools to shorten the learning curve and provide

developers with a more effective experience. As a result of these efforts, the tools known

as Hob and Toaster have emerged. Hob and Toaster are designed with a graphical user

interface for the Bitbake build system within the Yocto Project [20]. Their primary goal is

to streamline interaction with the Yocto Project, enabling users to perform daily tasks

more quickly and efficiently. Hob and Toaster are part of initiatives aimed at optimizing

interaction with projects by creating a more accessible learning curve, particularly

beneficial for newcomers [21].

In addition to these efforts, the tool developed within the scope of this study aims to focus

on shortening the steep learning curve of the Yocto Project and automating the resolution

of fetch errors encountered in the process of creating a customized embedded Linux

distribution. Thus, the goal is to go beyond the capabilities of the tools developed in this

context.

The tool effectively detects internet interruptions during fetch processes and

automatically initiates retry procedures in case of temporary outages, ensuring

continuous project progression. Additionally, the tool thoroughly examines complex

recipe errors within the Yocto Project, automatically rectifying issues encountered during

fetch operations. This systematic approach aims to expedite the error resolution process

rapidly without requiring manual intervention from developers. Moreover, by

eliminating manual processes that developers would perform for fetch errors, the tool

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 72

prevents the BitBake lock situation and reduces the frequency of the "unable to start

bitbake server" error. The tool systematically analyzes the health of URLs used in fetch

processes, identifying potential errors in the utilized URLs. Furthermore, it evaluates

internet connectivity issues arising during fetch operations within the Yocto Project. By

detecting various scenarios such as DNS problems, connection timeouts, and packet loss,

the tool provides developers with comprehensive reports, enabling swift diagnosis of

internet connectivity issues.

Within the scope of this study, the visuals of the tool developed as a prototype are

presented below.

Figure 144: Main screen on Yocto Project build tool

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 73

Figure 155: Build Process on Yocto Project build tool

Figure 166: Error screen on Yocto Project build tool

5. Discussion and Conclusion

In the discussion section of this study, a detailed evaluation of the system's performance

and applicability has been conducted. The tool developed within the scope of this study

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 74

has been successful in resolving encountered fetch errors. However, it is crucial to

consider potential areas for the future development of the tool.

One of the potential areas for future development in this study is the integration of more

comprehensive error detection and correction features into the tool. By automatically

detecting and correcting common errors such as version incompatibilities, syntax errors,

and dependency issues encountered while creating a customized embedded Linux

distribution with the Yocto Project, these features added to the tool can further expedite

the learning curve of the Yocto Project.

Within the scope of this study, the developed tool extends the build time to an acceptable

duration due to the backup process of the necessary sources folder for recipe verification

to address fetch errors. A total of 20 builds were conducted from scratch for the imx-

image-full image. During these builds, backup times were measured. As a result of the

tests, it was observed that the backup time for the fundamental sources folder of the imx-

image-full image was completed within the range of 1.3 to 2 seconds. The tests conducted

and the obtained results are depicted in the graphics below. To further advance the study,

optimization of this timeframe is achievable.

Figure 177: Backup duration of sources folder graphics

Moreover, efficiency can be enhanced by integrating a structure into the tool that

automatically generates layers and recipes, which developers can utilize while creating a

1,4
1,3 1,3

1,5
1,4

1,5

1,3 1,3

2 2

1,6

1,8

1,6 1,6

1,3 1,3
1,4

1,7

1,4
1,3

0

0,5

1

1,5

2

2,5

Backup Duration of Sources Folder

Backup Duration of Sources Folder

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 75

custom embedded Linux distribution with the Yocto Project. By incorporating this

functionality into the tools used by developers in the Yocto Project build process, a GUI-

based Yocto Project ecosystem can be established, complementing the features developed

within the scope of this study.

The integration of CI/CD into the tool developed in this study can enhance the quality of

the work. CI/CD provides significant advantages to the Yocto Project development

process. Continuous integration allows developers to automatically merge each code

change and continuously test these changes. Additionally, the continuous deployment

phase automatically applies successfully tested changes to target systems, thereby

improving software usability and optimizing deployment processes. When used within

the Yocto Project, CI/CD offers developers a faster, more reliable, and consistent

development experience.

6. Acknowledge

We would like to convey our gratitude to Huseyin Karacali, the Software Architect, for

his skillful guidance and motivational leadership. Additionally, we acknowledge the

invaluable assistance provided by TTTech Auto Turkey throughout the development

stages of the project.

References

[1] The Yocto Project, “Technical Overview - The Yocto Project,” The Yocto Project, Nov. 09, 2023.

https://www.yoctoproject.org/development/technical-overview/

[2] “2 Yocto Project Terms — The Yocto Project ® 4.3.999 documentation.”

https://docs.yoctoproject.org/ref-manual/terms.html

[3] “BitBake Documentation — The Yocto Project ® 4.3.999 documentation.”

https://docs.yoctoproject.org/bitbake.html

[4] J. Martindale, “What is a CPU? here’s everything you need to know,” Digital Trends,

https://www.digitaltrends.com/computing/what-is-a-cpu.

[5] “Central Processing Unit,” Central Processing Unit - an overview | ScienceDirect Topics,

https://www.sciencedirect.com/topics/engineering/central-processing-unit.

[6] “I.MX 8 Family applications processor: ARM cortex-A53/A72/M4,” i.MX 8 Family Applications

Processor | Arm Cortex-A53/A72/M4 | NXP Semiconductors, https://www.nxp.com/products/processors-

and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-

8-family-arm-cortex-a53-cortex-a72-virtualization-vision-3d-graphics-4k-video:i.MX8.

[7] A. Klinger, “Embedded linux – kernel, Aufbau, toolchain,” Embedded Software Engineering -

Fachwissen, https://www.embedded-software-engineering.de/embedded-linux-kernel-aufbau-toolchain-

a-99d15279522f4d1fcd8b2d852a8f771b/.

https://www.embedded-software-engineering.de/embedded-linux-kernel-aufbau-toolchain-a-99d15279522f4d1fcd8b2d852a8f771b/
https://www.embedded-software-engineering.de/embedded-linux-kernel-aufbau-toolchain-a-99d15279522f4d1fcd8b2d852a8f771b/

The European Journal of Research and

Development, 4(2), 2024 https://doi.org/10.56038/ejrmd.v4i2.430

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 76

[8] “OpenEmbedded-Core - openembedded.org.”

https://www.openembedded.org/wiki/OpenEmbedded-Core

[9] “1 Overview — Bitbake dev documentation.” https://docs.yoctoproject.org/bitbake/bitbake-user-

manual/bitbake-user-manual-intro.html#introduction

[10] “The Architecture of Open Source Applications (Volume 2)The Yocto Project.”

https://aosabook.org/en/v2/yocto.html

[11] “3 Understanding and Creating Layers — The Yocto Project ® dev documentation.”

https://docs.yoctoproject.org/dev/dev-manual/layers.html

[12] “QT Creator Manual.” https://doc.qt.io/qtcreator/

[13] “Writing Code | QT Creator Manual.” https://doc.qt.io/qtcreator/creator-editor-functions.html

[14] “IDE Overview | QT Creator Manual.” https://doc.qt.io/qtcreator/creator-overview.html

[15] “PyQt - Python Wiki.” https://wiki.python.org/moin/PyQt.

[16] A. Gonzalez, Embedded Linux projects using Yocto Project Cookbook. 2015.

[17] D. Huong, “Development of Linux Distribution using Yocto Project,” Theseus, 2022.

https://urn.fi/URN:NBN:fi:amk-202204296507

[18] “2 Introducing the Yocto Project — The Yocto Project ® 4.3.999 documentation.”

https://docs.yoctoproject.org/overview-manual/yp-intro.html

[19] Admin, “Yocto Build System - Sirin Software,” Sirin Software, Jan. 16, 2024.

https://sirinsoftware.com/blog/yocto-build-system

[20] “Learning embedded Linux using the Yocto project.” https://subscription.packtpub.com/book/iot-

and-hardware/9781784397395/6/ch06lvl1sec42/hob-and-toaster

[21] “Toaster User Manual.” https://docs.yoctoproject.org/2.1/toaster-manual/toaster-manual.html

https://wiki.python.org/moin/PyQt

