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Abstract 

Stream flow prediction is crucial for effective water resource management, flood prevention, and 

environmental planning. This study investigates the performance of various deep neural network 

architectures, including LSTM, biLSTM, GRU, and biGRU models, in stream flow and peak 

stream flow predictions. Traditional methods for stream flow forecasting have relied on 

hydrological models and statistical techniques, but recent advancements in machine learning and 

deep learning have shown promising results in improving prediction accuracy. The study 

compares the performance of the models using comprehensive evaluations with 1-6 input steps for 

both general stream flow and peak stream flow predictions. Additionally, a detailed analysis is 

conducted specifically for the biLSTM model, which demonstrated high performance results. The 

biLSTM model is evaluated for 1-4 ahead forecasting, providing insights into its specific strengths 

and capabilities in capturing the dynamics of stream flow. Results show that the biLSTM model 

outperforms other models in terms of prediction accuracy, especially for peak stream flow 

forecasting. Scatter plots illustrating the forecasting performances of the models further 

demonstrate the effectiveness of the biLSTM model in capturing temporal dependencies and 

nonlinear patterns in stream flow data. This study contributes to the literature by evaluating and 

comparing the performance of deep neural network models for general and peak stream flow 

prediction, highlighting the effectiveness of the biLSTM model in improving the accuracy and 

reliability of stream flow forecasts. 
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1. Introduction 

Stream flow prediction plays an important role in water resource management, flood 

prevention, and environmental planning. Accurate forecasts are crucial for applications 

like reservoir planning, agricultural water management, and catchment water balance 

estimation. The stream flow is influenced by various factors such as watershed 

characteristics, wetland presence, and hyporheic zone interactions [1]. Both physical and 

data-driven models are used in stream flow forecasting. Physical models rely on an 

understanding of hydrological processes, while data-driven models, such as Artificial 

Neural Networks (ANN) and hybrid models rely on leverage historical data. Data-driven 

models, have been shown to improve the accuracy of stream flow forecasting and can 

handle complex non-linear relationships and patterns in the data, making them effective 

in capturing the dynamics of stream flow [2], [3], [4]. Traditional methods of streamflow 

forecasting have been based on hydrological models and statistical techniques. However, 

recent advancements in machine learning (ML) and deep learning (DL) methods have 

shown promise results in improving the accuracy and reliability of streamflow 

predictions [2], [3], [5]. Several studies have demonstrated the effectiveness of machine 

learning models, such as support vector regression, extreme learning machine, and 

Gaussian processes, in stream flow forecasting [6], [7], [8], [9], [10]. Additionally, the 

application of deep learning techniques, including recurrent neural networks (RNN) and 

long short-term memory (LSTM), has shown accurate results in capturing the temporal 

dependencies and nonlinear patterns in stream flow data [11], [12], [13], [14]. 

Furthermore, the integration of machine learning algorithms with optimization 

techniques, such as genetic algorithms and gravitational search algorithms has been 

explored to enhance the accuracy of river flow forecasting model [15], [16]. The use of 

ensemble learning methods, such as hybrid tree based and instance-based learning, has 

been investigated to improve the robustness and generalization of stream flow 

forecasting models [17], [18]. These approaches aim to address the inherent uncertainties 

and complexities associated with hydrological systems, thereby providing more reliable 

predictions of stream flow dynamics. Stream flow forecasting has traditionally focused 

on overall stream flow patterns, but there is a growing recognition of the importance of 

peak flow forecasting. Peak flow forecasting is crucial for determining the severity of 

potential floods. In particular, the ability to predict the magnitude and timing of peak 

flows is essential for effective flood risk management [19]. One approach involves the use 

of k-means clustering to identify regions with similar mean annual runoff, followed by 

Random Forest to map climate and catchment features to flow quantiles in each cluster 

[20]. Another study compared different machine learning algorithms for streamflow 
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forecasting and found that categorical-based streamflow forecast outperformed 

regression-based forecast, with forest-based algorithms showing superior performance 

in forecasting high streamflow fluctuations [21]. Additionally, a comparison between a 

stacked model based on Random Forest and Multilayer Perceptron algorithms and a bi-

directional LSTM network model showed comparable forecasting capabilities, with the 

stacked model performing better in predicting peak flow rates [22]. Ensemble machine-

learning regression frameworks have also been developed to predict missing monthly 

streamflow data, achieving high accuracy using models such as gradient boosting 

regression and random forest regression [23]. The performance of three data-driven 

models (ANN, ANFIS, and SVM) was evaluated for streamflow prediction, with the SVM 

model outperforming the other two models [24]. Li and Yuan developed a cascade LSTM 

model to forecast daily streamflow, achieving skillful predictions with high Kling-Gupta 

efficiency (KGE) values at different lead times [25]. Taormina et al. compared LSTM 

models trained with local and global datasets, finding that training with global 

meteorological forcing resulted in higher model performance for streamflow predictions 

in ungauged basins [26]. Granata compared a simpler model based on stacked Random 

Forest and Multilayer Perceptron algorithms with a more complex bi-directional LSTM 

network model, finding comparable forecasting capabilities but with shorter 

computation times for the stacked model [27]. Majumder and Reich proposed a non-

stationary process mixture model (NPMM) for extreme streamflow forecasts, 

incorporating downscaled climate model precipitation projections and neural networks 

to address intractable likelihoods [22]. 

In the presented study, deep neural network architectures incorporating LSTM, biLSTM, 

GRU, and biGRU layers were developed to perform stream flow and peak stream flow 

predictions. Through this, the performance of the four models was compared, and an 

evaluation of the peak and overall stream flow predictions was conducted. The 

motivation of the study is listed as: 

The study involves evaluating used models for general peak current prediction, namely 

LSTM, GRU, and biLSTM. The aim is to compare the performance of these models to 

identify their strengths and weaknesses. 

There is no existing study in the literature that utilizes a biGRU model for peak current 

prediction. By incorporating the biGRU model, this study aims to contribute to the 

literature by evaluating and comparing the performance of this model against others. 

In addition to the comparative analysis of LSTM, biLSTM, GRU, and biGRU models in 

terms of general stream flow and peak stream flow predictions, this study employs a 

comprehensive evaluation approach using 1-6 input steps. 
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Beyond this, a detailed analysis is conducted specifically for the biLSTM model, which 

demonstrated high performance results. For the 1-input case, the study delves into the 

model's ability to make accurate 1-4 steps ahead predictions for both general stream flow 

and peak stream flow.  

This detailed examination aims to provide insights into the specific strengths and 

capabilities of the biLSTM model in capturing the dynamics of stream flow, contributing 

to a more nuanced understanding of its predictive abilities. 

2. Materials and Methods 

2.1. Daily Stream Flow Data Used for Forecasting Study 

In this study, the stream flow data have been collected from the Buffalo River near St. Joe, 

AR. This region, nestled in the Arkansas, experiences a temperate climate characterized 

by distinct seasons. Summers are typically warm and humid, with average temperatures 

ranging from 70°F to 90°F (21°C to 32°C). Winters are relatively mild, with temperatures 

averaging between 30°F and 50°F (−1°C to 10°C). The location associated with the 

recorded daily stream flow data can be described as follows: The data pertains to a 

specific area within Searcy County, Arkansas, identified by the Hydrologic Unit Code 

(HUC) 11010005. The geographical coordinates of this location are approximately 

35°58'59" North latitude and 92°44'50" West longitude in the NAD83 coordinate system. 

The drainage area of this location, indicating the total land area that contributes water 

flow to a specific point, is measured to be 829 square miles. 

The stream flow data has been recorded from USGS Water Data for USA [28], covering 

the period from 1980 to 2024, with daily granularity. The utilized datasets and the defined 

peak data in the database are presented in Figure 1. Seventy percent (70%) of the data has 

been allocated for training purposes, while the remaining thirty percent (30%) has been 

reserved for testing purposes. 



The European Journal of Research and 

Development, 4(1), 2024 https://doi.org/10.56038/v4i1.422  
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 65 

 

 

a) 

 

b) 

 

c) 



The European Journal of Research and 

Development, 4(1), 2024 https://doi.org/10.56038/v4i1.422  
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 66 

 

Figure 1. a) Daily stream flow data and peak flow data recorded from Buffalo River near St. Joe, AR b) 

Normalized stream flow training data c) Normalized stream flow testing data 

Table 1. Statistical values of the streamflow data used in this study. 

 Maximum 

(f3/sn) 

Minimum 

(f3/sn) 

Mean (f3/sn) Variance Skewness Kurtosis 

Training 

Data 
124000 11 1.0847e+03 9.7819e+06 15.4538 415.2162 

Testing 

Data 
85900 12.4000 1.2468e+03 8.1589e+06 11.4995 237.3822 

 

Figure 2. Flow chart of the study 

In the conducted study, predictions were performed for 1-3 steps ahead using input data 

from the previous 1–5-time lags. The variables corresponding to the input and output 

data used in the prediction study are provided in Table 2. 

Table 2. Input and output variables used for forecasting study. 

 Input Variables Output 

Variable 
 Input Variables Output 

Variable 
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One Input-

One ahead 

forecasting 

Q(t-1) Q(t) Four Input-

One ahead 

forecasting 

Q(t-4), Q(t-3), Q(t-2), 

Q(t-1) 
Q(t) 

One Input-

two ahead 

forecasting 

Q(t-2) Q(t) Four Input-

two ahead 

forecasting 

Q(t-5), Q(t-4), Q(t-3), 

Q(t-2) 
Q(t) 

One Input-

Three ahead 

forecasting 

Q(t-3) Q(t) Four Input-

three ahead 

forecasting 

Q(t-6), Q(t-5), Q(t-4), 

Q(t-3) 
Q(t) 

Two Input-

One ahead 

forecasting 

Q(t-2), Q(t-1) Q(t) Five Input-

One ahead 

forecasting 

Q(t-5), Q(t-4), Q(t-3), 

Q(t-2), Q(t-1) 
Q(t) 

Two Input-

two ahead 

forecasting 

Q(t-3), Q(t-2) Q(t) Five Input-

two ahead 

forecasting 

Q(t-6), Q(t-5), Q(t-4), 

Q(t-3), Q(t-2) 
Q(t) 

Two Input-

three ahead 

forecasting 

Q(t-4), Q(t-3) Q(t) Five Input-

three ahead 

forecasting 

Q(t-7), Q(t-6), Q(t-5), 

Q(t-4), Q(t-3) 
Q(t) 

Three Input-

One ahead 

forecasting 

Q(t-3), Q(t-2), 

Q(t-1) 
Q(t) Six Input-One 

ahead 

forecasting 

Q(t-6), Q(t-5), Q(t-4), 

Q(t-3), Q(t-2), Q(t-1) 
Q(t) 

Three Input-

two ahead 

forecasting 

Q(t-4), Q(t-3), 

Q(t-2) 
Q(t) Six Input-two 

ahead 

forecasting 

Q(t-7), Q(t-6), Q(t-5), 

Q(t-4), Q(t-3), Q(t-2) 
Q(t) 

Three Input-

three ahead 

forecasting 

Q(t-5), Q(t-4), 

Q(t-3) 
Q(t) Six Input-

three ahead 

forecasting 

Q(t-8), Q(t-7), Q(t-6), 

Q(t-5), Q(t-4), Q(t-3) 
Q(t) 

2.2. Deep Learning Algorithm 

Deep learning, a subset of machine learning, has gained significant attention due to its 

ability to process large datasets, identify hidden patterns, and make accurate predictions 

[29]. It is characterized by its capacity to generalize to new users, making it suitable for 

real-world applications [30]. The existence of LSTM, biLSTM, GRU, and biGRU models 

is well established in the field of deep learning algorithms for prediction work. These 

models have been widely used and compared in various studies. In this study, 

predictions were made using deep learning algorithms, including LSTM, biLSTM, GRU, 

and biGRU models. 

2.2.1. Long Short-Term Memory Networks 
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LSTM is a type of recurrent neural network (RNN) that has gained significant attention 

due to its ability to handle long-term dependencies and process sequential data 

effectively. It was first proposed by Schmidhuber et al. in 1997 and designed to address 

the vanishing and exploding gradient problems encountered in traditional RNNs [31]. 

The architecture of LSTM includes specialized units called cells, which have the unique 

ability to maintain and update a cell state, allowing them to retain information over long 

sequences and selectively forget or remember information as needed. LSTM cells consist 

of three main components: 

Cell State: The part that stores and carries long-term information. 

Input Gate: A gate that determines which information will be added to the cell state. 

Output Gate: A gate that determines how much information will be output from the cell 

state. 

These components regulate the flow of information during the learning process of LSTM. 

The input gate controls the addition of new information to the cell state, while the output 

gate determines which information will be output [31]. 

2.2.2. Bidirectional Long Short Term Memory Networks 

Bidirectional Long Short-Term Memory (BiLSTM) refers to a variant of LSTM, standing 

for "Bidirectional Long Short-Term Memory." The key feature of BiLSTM is its ability to 

provide a bidirectional flow of information [32]. This involves processing input data both 

in a regular manner (from backward to forward) and in a reversed manner (from forward 

to backward), resulting in the generation of two distinct cell states. Consequently, 

biLSTM offers greater flexibility in understanding both directions of dependencies in a 

time series and capturing long-term contexts more effectively. The components of 

biLSTM are similar to traditional LSTM and consist of the Cell State, Input Gate, and 

Output Gate. However, BiLSTM, by integrating bidirectional processing, assists in 

obtaining a more comprehensive context compared to traditional LSTM [32]. This feature 

proves particularly beneficial in applications such as natural language processing, time 

series prediction, and similar tasks. 

2.2.3. Gated Recurrent Units 

The Gated Recurrent Unit (GRU) is a deep learning model proposed for various 

applications, including time series classification and disease prediction. GRU is a type of 

RNN cell, similar to another popular RNN type called LSTM. The primary goal of GRU 

is to effectively model long-term dependencies and sequential data sets. 
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The GRU, introduced by Cho et al. in 2014, was designed to allow each recurrent unit to 

adaptively capture dependencies of different time scales [33]. Much like the LSTM unit, 

the GRU incorporates gating units that modulate the flow of information within the unit. 

However, unlike LSTM, GRU does not have separate memory cells. The distinctive 

features of GRU include the Update Gate, which controls how much old information to 

retain, with a higher value preserving more old information, and the Reset Gate, which 

determines which information to forget, with a higher value leading to more past 

information being discarded. Additionally, GRU maintains a Cell State, similar to the cell 

state in LSTM, to store long-term information. 

GRU effectively manages long-term dependencies akin to LSTM but uses fewer 

parameters. Consequently, GRU demonstrates comparable performance to LSTM while 

potentially achieving faster training times and reduced computational costs [34]. 

2.2.4. Bidirectional Gated Recurrent Units 

Bidirectional Gated Recurrent Units consist of two sets of Gated Recurrent Units that 

process input data in both the forward direction (from backward to foward) and the 

backward direction (from forward to backward). BiGRUs provide the capability to model 

dependencies in both directions of the input data more effectively by enabling 

bidirectional information flow. GRU cells operating in both directions are utilized to gain 

a more comprehensive understanding of relationships in time series or sequential data. 

The fundamental components of biGRUs are as follows: 

Forward GRU: A GRU cell that processes input data from past to future. 

Backward GRU: A GRU cell that processes input data from future to past. 

2.2.5. Proposed Deep Neural Network Architectures 

In the proposed study, deep neural network architectures were developed for the 1-3 step 

ahead prediction of daily stream flow data using LSTM, biLSTM, GRU, and biGRU 

layers. In the first model, an LSTM layer was utilized, followed by a biLSTM layer in the 

second model, a GRU layer in the third model, and a biGRU layer in the fourth model. 

During the development of the architecture, prediction tasks were performed using 

LSTM, biLSTM, GRU, and biGRU layers consisting of different numbers of cells ranging 

from 32 to 256. Additionally, fully connected layers with varying numbers and sequences 

were incorporated into the architecture. The final network structure was determined 

based on the achieved best prediction performance and is illustrated in Figure 3.  

The options are used in this study as follows: The optimization algorithm employed for 

training is 'adam', which is an adaptive optimization algorithm widely used in deep 
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learning models. The training process is set to run for a maximum of 100 epochs. The 

'Gradient Threshold' parameter is set to 1, limiting the gradient value to prevent 

exploding gradients during training. The 'Initial Learn Rate' is set to 0.01, defining the 

initial learning rate for the model. Additionally, a piecewise learning rate schedule is 

implemented using 'Learn Rate Schedule', which allows the learning rate to adapt at 

different stages of training. The 'Learn Rate Drop Factor' of 0.1 and 'Learn Rate Drop 

Period' of 50 indicate that the learning rate will drop by a factor of 0.1 every 50 epochs. 

 

Figure 3. Deep network structure used in forecasting study. 

2.3. Performance Parameters Used in the Study 

In the conducted prediction study, the performance of the models was evaluated based 

on several performance parameters for stream flow prediction, including the Correlation 

Coefficient (R), Mean Squared Error (MSE), Coefficient of Determination (R²), and Mean 

Absolute Error (MAE).  

Mean Absolute Error (MAE) represents the average absolute difference between the 

observed and predicted values in the dataset and is calculated using the formula in 

Equation 1:  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑋𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑,𝑖|
𝑁
𝑖=1               (1) 

Mean Squared Error (MSE) is computed by averaging the squared differences between 

observed and predicted values in the dataset, as shown in Equation 2: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑋𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑,𝑖)

2𝑁
𝑖=1               (2) 

Correlation Coefficient (R) indicates the degree, direction, and significance of the 

relationship between observed and predicted values and is represented by Equation 3: 

𝑅 =
1

𝑁−1
∑ (

𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖−𝜇𝑥

𝜎𝑥
) (

𝑋𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑,𝑖−𝜇𝑥𝑓𝑜𝑟

𝜎𝑥𝑓𝑜𝑟
)𝑁

𝑖=1              (3) 
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In this equation, μ_x and μ_xfor are the means of the observed and predicted time series, 

while σ_x and σ_xfor are their standard deviations, respectively. 

Coefficient of Determination (R²) is commonly used to measure the prediction capability 

of models. As R² approaches 1, it indicates an increased relationship between observed 

and predicted values. R² is calculated using Equation 4:  

𝑅2 = 1 −
∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖−𝑋𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑,𝑖)

2𝑁
𝑖=1

∑ (𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖−𝜇𝑥)
2𝑁

𝑖=1
            (4) 

3. Results 

In the conducted study, the prediction performance of LSTM, biLSTM, GRU, and biGRU 

models was initially obtained for 1-6 input steps and one-ahead forecasting from 

normalized stream flow data. The prediction study includes the illustration of one-input 

one-ahead forecasting graphs, as an example in Figure 4. The overall stream flow 

prediction performances obtained from all models are presented in Table 3, and the peak 

stream flow prediction performances are provided in Table 4. Additionally, scatter plot 

graphs illustrating the prediction performances are presented for general stream flow in 

Figure 5 and for peak stream flow in Figure 6. 

 

Figure4. One Input One ahead forecasting data using LSTM, biLSTM, GRU, biGRU Models 
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Table 3. One-six input one ahead streamflow forecasting performances using proposed models. 

Model MSE MAE R R2 

One Input One Ahead Forecasting 

LSTM 0.0007     0.0059     0.6240     0.3894 

biLSTM 0.0000     0.0033     0.9891     0.9784 

GRU 0.0007     0.0067     0.6278     0.3941 

biGRU 0.0007     0.0066     0.6035     0.3642 

Two Input One Ahead Forecasting 

LSTM 0.0007 0.0061 0.6219 0.3868 

biLSTM 0.0000 0.0023 0.9929 0.9859 

GRU 0.0007 0.0076 0.6365 0.4052 

biGRU 0.0007 0.0069 0.6055 0.3667 

Three Input One Ahead Forecasting 

LSTM 0.0007 0.0061 0.6041 0.3650 

biLSTM 0.0001 0.0025 0.9746 0.9499 

GRU 0.0007 0.0078 0.6383 0.4075 

biGRU 0.0007 0.0064 0.6068 0.3682 

Four Input One Ahead Forecasting 

LSTM 0.0007 0.0074 0.6150 0.3783 

biLSTM 0.0000 0.0021 0.9833 0.9669 

GRU 0.0007 0.0063 0.6355 0.4039 

biGRU 0.0007 0.0061 0.6210 0.3857 

Five Input One Ahead Forecasting 

LSTM 0.0007 0.0070 0.6294 0.3962 

biLSTM 0.0000 0.0038 0.9809 0.9622 

GRU 0.0007 0.0064 0.6387 0.4080 

biGRU 0.0007 0.0060 0.6325 0.4001 

Six Input One Ahead Forecasting 

LSTM 0.0007 0.0073 0.6293 0.3960 

biLSTM 0.0001 0.0047 0.9783 0.9571 

GRU 0.0007 0.0062 0.6241 0.3895 

biGRU 0.0007 0.0059 0.6127 0.3754 
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Table 4. One-six in.put one ahead peak streamflow forecasting performances using proposed models. 

Model MSE MAE R R2 

One Input One Ahead Forecasting 

LSTM 0.1592 0.3073     0.5497     0.3022 

biLSTM 0.1446     0.2825     0.9947     0.9895 

GRU 0.1556     0.3021     0.5769     0.3328 

biGRU 0.1603     0.3092     0.5385     0.2899 

Two Input One Ahead Forecasting 

LSTM 0.1585 0.3062 0.5530 0.3058 

biLSTM 0.1341 0.2745 0.9976 0.9953 

GRU 0.1545 0.3003 0.5780 0.3341 

biGRU 0.1604 0.3092 0.5364 0.2877 

Three Input One Ahead Forecasting 

LSTM 0.1645 0.3150 0.5354 0.2867 

biLSTM 0.1347 0.2787 0.9904 0.9809 

GRU 0.1541 0.2997 0.5842 0.3413 

biGRU 0.1599 0.3085 0.5493 0.3017 

Four Input One Ahead Forecasting 

LSTM 0.1601 0.3087 0.5386 0.2901 

biLSTM 0.1246 0.2659 0.9918 0.9837 

GRU 0.1553 0.3014 0.5818 0.3385 

biGRU 0.1584 0.3062 0.5544 0.3073 

Five Input One Ahead Forecasting 

LSTM 0.1576 0.3049 0.5570 0.3103 

biLSTM 0.1266 0.2682 0.9888 0.9778 

GRU 0.1546 0.3006 0.5864 0.3439 

biGRU 0.1565 0.3031 0.5771 0.3331 

Six Input One Ahead Forecasting 

LSTM 0.1567 0.3036 0.5597 0.3133 

biLSTM 0.1279 0.2698 0.9848 0.9699 

GRU 0.1569 0.3039 0.5718 0.3270 
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biGRU 0.1596 0.3080 0.5532 0.3060 
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e f 

 
Figure5. Scatter plots for a-f) one-six input one ahead forecasting data using LSTM, biLSTM, GRU, 

biGRU models. 
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Figure 6. Scatter plots for a-f) one-six input one ahead forecasting peak data using LSTM, biLSTM, 

GRU, biGRU models. 

In the second phase of this study, the biLSTM model, which exhibited high prediction 

performance, was analyzed for 1-6 input steps and 1-4 ahead forecasting. The overall and peak 

stream flow performances are provided in Table 5 and Table 6, respectively. Additionally, scatter 
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plots illustrating the ahead forecasting performances of the biLSTM model for both general 

stream flow and peak stream flow are presented in Figure 7 and Figure 8, respectively. 

Table 5. One-six input one-four ahead streamflow forecasting performances using biLSTM model. 

Model MSE MAE R R2 

One Ahead Forecasting 

One Input biLSTM Model 0.0000 0.0033 0.9891 0.9784 

Two Input biLSTM Model 0.0000 0.0023 0.9929 0.9859 

Three Input biLSTM Model 0.0001 0.0025 0.9746 0.9499 

Four Input biLSTM Model 0.0000 0.0021 0.9833 0.9669 

Five Input biLSTM Model 0.0000 0.0038 0.9809 0.9622 

Six Input biLSTM Model 0.0001 0.0047 0.9783 0.9571 

Two Ahead Forecasting 

One Input biLSTM Model 0.0001 0.0029 0.9662 0.9336 

Two Input biLSTM Model 0.0001 0.0033 0.9760 0.9525 

Three Input biLSTM Model 0.0001 0.0029 0.9668 0.9347 

Four Input biLSTM Model 0.0001 0.0029 0.9659 0.9330 

Five Input biLSTM Model 0.0001 0.0032 0.9645 0.9303 

Six Input biLSTM Model 0.0001 0.0027 0.9775 0.9555 

Three Ahead Forecasting 

One Input biLSTM Model 0.0001 0.0034 0.9650 0.9312 

Two Input biLSTM Model 0.0001 0.0034 0.9713 0.9435 

Three Input biLSTM Model 0.0001 0.0031 0.9605 0.9225 

Four Input biLSTM Model 0.0001 0.0035 0.9536 0.9093 

Five Input biLSTM Model 0.0001 0.0033 0.9584 0.9185 

Six Input biLSTM Model 0.0001 0.0030 0.9614 0.9242 

Four Ahead Forecasting 

One Input biLSTM Model 0.0002 0.0049 0.9106 0.8293 

Two Input biLSTM Model 0.0001 0.0032 0.9658 0.9328 

Three Input biLSTM Model 0.0001 0.0045 0.9548 0.9117 

Four Input biLSTM Model 0.0001 0.0030 0.9618 0.9250 

Five Input biLSTM Model 0.0001 0.0036 0.9581 0.9180 

Six Input biLSTM Model 0.0001 0.0034 0.9582 0.9182 
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Table 6. One-six input one-four ahead peak streamflow forecasting performances using biLSTM model. 

Model MSE MAE R R2 

One Ahead Forecasting 

One Input biLSTM Model 0.1446 0.2825 0.9947 0.9895 

Two Input biLSTM Model 0.1341 0.2745 0.9976 0.9953 

Three Input biLSTM Model 0.1347 0.2787 0.9904 0.9809 

Four Input biLSTM Model 0.1246 0.2659 0.9918 0.9837 

Five Input biLSTM Model 0.1266 0.2682 0.9888 0.9778 

Six Input biLSTM Model 0.1279 0.2698 0.9848 0.9699 

Two Ahead Forecasting 

One Input biLSTM Model 0.1352 0.2754 0.9816 0.9635 

Two Input biLSTM Model 0.1320 0.2720 0.9882 0.9765 

Three Input biLSTM Model 0.1299 0.2748 0.9850 0.9702 

Four Input biLSTM Model 0.1234 0.2659 0.9727 0.9461 

Five Input biLSTM Model 0.1230 0.2692 0.9663 0.9337 

Six Input biLSTM Model 0.1227 0.2641 0.9853 0.9708 

Three Ahead Forecasting 

One Input biLSTM Model 0.1302 0.2714 0.9814 0.9631 

Two Input biLSTM Model 0.1224 0.2641 0.9843 0.9689 

Three Input biLSTM Model 0.1214 0.2653 0.9662 0.9335 

Four Input biLSTM Model 0.1211 0.2645 0.9662 0.9336 

Five Input biLSTM Model 0.1173 0.2638 0.9626 0.9266 

Six Input biLSTM Model 0.1223 0.2660 0.9538 0.9098 

Four Ahead Forecasting 

One Input biLSTM Model 0.1362 0.2740 0.9602 0.9219 

Two Input biLSTM Model 0.1193 0.2630 0.9706 0.9421 

Three Input biLSTM Model 0.1254 0.2714 0.9487 0.9001 

Four Input biLSTM Model 0.1209 0.2671 0.9590 0.9196 

Five Input biLSTM Model 0.1176 0.2628 0.9446 0.8924 

Six Input biLSTM Model 0.1231 0.2685 0.9443 0.8916 
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Figure 7. Scatter plots for a-f) one-six input one-four ahead forecasting data using biLSTM model. 
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Figure 8. Scatter plots for a-f) one-six Input one-four ahead forecasting peak data using biLSTM model. 

4. Discussion and Conclusion 

The results of the study indicate significant variations in the performance of different 

deep neural network architectures for stream flow and peak stream flow predictions. The 

models evaluated include LSTM, biLSTM, GRU, and biGRU, with a comprehensive 

analysis conducted using 1-6 input steps. For one-ahead streamflow forecasting, the 
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biLSTM model consistently outperforms the other models, achieving a remarkably low 

MSE and MAE, as well as high values for R and R2. This suggests that the biLSTM model 

excels in capturing the complex dynamics of stream flow and demonstrates superior 

predictive abilities compared to LSTM, GRU, and biGRU models. 

Similar trends are observed in one-ahead peak streamflow forecasting, where the biLSTM 

model consistently exhibits superior performance across various input steps. The model 

achieves low MSE and MAE values, while obtaining high R and R2 values, indicating its 

effectiveness in predicting peak stream flows accurately. 

The detailed analysis for the biLSTM model further highlights its strengths. In one-ahead 

forecasting, the biLSTM model showcases exceptional accuracy across different input 

steps, providing robust predictions for both general stream flow and peak stream flow. 

Additionally, the model's ability to make accurate one-four ahead predictions is 

demonstrated, contributing valuable insights into its predictive capabilities. 

The superiority of the biLSTM model in stream flow and peak stream flow predictions 

suggests that its architecture, incorporating bidirectional long short-term memory, 

effectively captures the temporal dependencies and intricate patterns present in the data. 

The bidirectional aspect allows the model to consider both past and future information, 

enabling more accurate predictions. 

The incorporation of the biGRU model in the study adds a novel dimension, as there is a 

lack of existing literature on its application for peak stream current prediction. However, 

the results indicate that, while the biGRU model performs reasonably well, it falls short 

of the accuracy achieved by the biLSTM model. This emphasizes the importance of model 

selection in achieving optimal performance for specific prediction tasks. 

In conclusion, this study contributes valuable insights to the field of stream flow 

prediction by comparing and evaluating LSTM, biLSTM, GRU, and biGRU models. The 

biLSTM model emerges as a powerful choice for accurate and reliable stream flow and 

peak stream flow predictions, showcasing its potential for practical applications in 

hydrological forecasting. The study also highlights the importance of considering 

bidirectional architectures and comprehensive evaluation approaches for achieving 

optimal results in stream flow prediction tasks. 
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