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Abstract 

Images cannot always be expected to come in a certain standard format and orientation. Deep networks 

need to be trained to take into account unexpected variations in orientation or format. For this purpose, 

training data should be enriched to include different conditions. In this study, the effects of data enrichment 

on the performance of deep networks in the super resolution problem were investigated experimentally. A 

total of six basic image transformations were used for the enrichment procedures. In the experiments, two 

deep network models were trained with variants of the ILSVRC2012 dataset enriched by these six image 

transformation processes. Considering a single image transformation, it has been observed that the data 

enriched with 180 degree rotation provides the best results. The most unsuccessful result was obtained 

when the models were trained on the enriched data generated by the flip upside down process. Models scored 

highest when trained with a mix of all transformations. 

 

Keywords:   deep learning; image transformations; augmentation; training performance; 

super resolution; image processing 

1. Introduction 

Although the success of the deep networks depends on much more factors, it is 

basically directly related to the architecture of the networks and the richness and 

abundance of the data that they are trained on. The richness and redundancy of the data 

allows for the deep networks to more balanced learning. It causes robust behavior against 

the diversity and variances of the input data and undesirable negative conditions such as 

noise and deformations in the data. In addition, it allows the learning ability of the 

network to be distributed as homogeneously and evenly as much as possible to all 

components of the network. In terms of better training the network, it is very important 

to pass the network through a learning process in which the conditions mentioned above 
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are also included in the process, rather than training the network with a dataset prepared 

with certain assumptions. For this purpose, a training process should be designed by 

taking into account the variants of the data and/or various adverse conditions that the 

network may encounter. In order to provide these conditions, the data should be 

transformed into a form of a rich training set that considers potential transformations and 

different situations. 

In this study, the effects of data (image) enrichment operations are experimentally 

examined for the super resolution problem. Six basic image transformation operations 

are introduced in the experiments for training two distinct deep learning models. The 

experiments clearly demonstrated the effects (positive or negative) of image 

transformation operations on the performance of the models.  

2. Related Studies 

SR aims at improving the details while increasing the actual resolution in an image. 

High resolution images are produced from low resolution images through enlarging 

them. SR is considered as an inverse problem in which high resolution images would be 

estimated from low resolution images. The low resolution (LR) images can be produced 

in simulations with the following formula for a given high resolution (HR) image: 

𝑥(𝑖, 𝑗)  =  𝐷(𝐵( 𝑀(𝑦)))  +  𝜂(𝑖, 𝑗)               (1) 

where x and y are respectively low and high resolution images. In the formula, M 

and B designate warping and blurring operations, respectively, and D indicates 

downsampling. η denotes the additive noise. 

In recent studies there are two main approaches in to super resolve the images: 

supervised and unsupervised [1] learning. Supervised methods aim at finding a mapping 

function between (LR) images and (HR) images by introducing the LR and HR image 

pages in the function. Most algorithms developed in recent years try to find the function 

that provides the match between low and high resolution images by training them with 

image patches obtained from single image samples. This kind of training is called as 

example based learning. Deep networks have shown very superior performance in super 

resolution problem through this kind of training. 

Deep networks outweighed canonical methods and techniques in the super-

resolution (SR) problem. Models developed in recent years apply a special methodology 

based on learning from single image samples. Sophisticated architecture of contemporary 

deep networks such as Convolutional Neural Networks (CNNs), AutoEncoders (AEs) 

[2], Generative Adversarial Networks (GANs) is the main reason why these techniques 

outperform traditional techniques. As per deep convolutional networks, a numerous 
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design features have already been proposed such as residual learning [3][4][5][6], densely 

connection [7][8], shortcut connection [9][10], iterative dense blocks with double 

upsampling layers [2], and etc.  

Some of CNN that adopted the residual learning approach can be counted as 

DRCN [11], VDSR [5], DRRN [12]. The EDSR [14] and ESPCN [13] offered the sub-pixel 

operation in the convolutional layers. FSRCNN [16] implemented a rapid and an efficient 

processing method. The DenseNet [7] and RDN [8] adopted the idea of densely connected 

layers. The MemNet [17] proposed the recursive unit and a gate unit in its a special 

architecture. The LapSRN [18] has used the Laplacian pyramid architecture The 

EnhanceNet [19] targeted to create more realistic textures. Another special CNNs are the 

MGEP-SRCNN [21] which introducing a multilabel gene expression programming and 

the HCNN [20] offering a hierarchical structure. 

 

Very recent studies with GANs have showed an exceptional success in the SR. The 

SRGAN [22] is proposed to recover better grain details, specifically for large upscaling 

factors. It has introduced the perceptual loss method composed of an adversarial loss and 

a content loss. The ESRGAN [23] is derived from the SRGAN architecture. The RTSRGAN 

[24] has collaborated the power of the ESPCN [13] in real-time processing and the 

advantages of ESRGAN. DGAN [25] proposed multiple generators in its structure. The 

GCN [26] offered a collective network design. The SRNTT [30] model has offered a 

reference based SR to produce more grainer details from reference images by focusing on 

the information loss on the LR images. The CGAN [27] featured a Laplacian pyramid 

fashion. A cycle in cycle fashion is recently introduced in the MCinCGAN [28]. The 

WGAN [29] has offered the Wasserstein GAN architecture. The FG-SRGAN [31] 

exploited feature-guided SR by stating that it is unfeasible to reconstruct LR images the 

real reference HR images not exist in the real world. The PGM [33] exploited a 

probabilistic generative framework offering a low computational cost and noise 

robustness. The GMGAN [32] integrated the Gradient Magnitude Similarity Deviation 

(GMSD) metric in its architecture to produce HR images in proportion to the human 

visual system (HVS). The G-GANISR [34] model introduced the least square loss rather 

than cross-entropy. Their main aim is to consume all image details without losing any 

information by progressively increasing the discriminator’s charge. 

3. Materials and Methods 

The model architecture is not only the factor affecting the success of the networks. The 

training parameters can be counted as another factors that significantly affect their 

performance. Besides the network architectures, the researchers have studied the training 
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hyper parameters as well to improve the performance. E.g., while some studies have 

taken into consideration the high learning rate [7][5][6][35], some others preferred to start 

with relatively small learning rate value [36][18][16]. There are some other approaches 

for improving the performance, The gradient clipping [5] is just one of these approaches. 

Majority of other proposals for training hyper parameters are as follows: using different 

input image size, number of batches, frequency of sample patches from the training 

image (stride value), etc. 

Researchers put lots of effort to excel the success of models by investigating new 

architectures or optimal set of hyper parameters [37]. Another reason for the success of 

these techniques is the richness of data. It is well known today that, in general, the more 

data the more successive models. Apart from these, some of the other factors affecting 

the performance of the models can be counted as the diversity and redundancy of the 

training data. In this context, it is desirable to have as many and diverse images for the 

subject domain in the training set as possible. Some kind of spatial and affine transforms 

[38] on images can be applied to training datasets for data enrichment. 

In example based learning, it is very important to simulate the entire subject domain as 

comprehensively as possible for deep networks to perform better. However, images may 

not always be in a standard form. They may appear in any form of spatial or affine 

transformations (e.g., flat, upside down, rotated, skewed) [38] due to various reasons 

such as lens distortion of the device or shooting orientation (horizontal, vertical, angular, 

etc.). Training deep networks also with such transformations will enable networks to be 

successful in processing images in such conditions. For this purpose, training image 

dataset should be enriched with various transformations. 

In this study, only basic image transformations are considered, although there are many 

image transformations (translation, projection, or their combinations, etc.). Six different 

transformations are used for the enrichment: orthogonal rotations of 90, 180 and 270 

degrees, and flip operations, left to right, up to down and left to right plus up to down. 

These operations are depicted in Figure 1. 

       

Original Rotate 90° Rotate 180° Rotate 270° 
Flip 

 left to right 
Flip 

up to down 

Flip 
left to right and 

up to down 

Figure 1. Seven fundamental image transformations used for data enrichment. 

3.1.Models 

In this study, the change in the performances of two deep networks according to the data 

enrichment in the super resolution problem were experimentally observed. In this 
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context, two deep network structures are exploited in the experiments: DECUSR [2] with 

three repeating blocks and SRCNN [39]. The both models are of typical CNNs. However, 

the DECUSR is comprised of twin upsampling layers, and densely connected blocks 

constructed with the similar idea as in DenseNet [7]. The details of SRCNN and DECUSR 

models are given in Figure 2 and Figure 3, respectively. 

 

Figure 2. Architecture of SRCNN [39] model. 

3.2.Training and Dataset 

The both models were trained first with the original dataset without any enrichment, and 

then, trained with the same dataset but this time applying one of the above-mentioned 

fundamental image transformations. Another training procedure was also performed 

with the same dataset by applying all transformations together. In total, seven different 

training procedures were performed. 

50 thousand images from the ILSVRC2012 [40] dataset, which comprises of 60 thousand 

images in total, were introduced in the training procedure for 2 scale factor. The training 

procedure has carried on for 10 epochs at most. The early stopping procedure is also used 

to prevent the models from overfitting. The performance of the networks was measured 

with the PSNR and SSIM metrics on the remaining 9999 images ―one image in the test 

set was excluded since it contains only one pixel information. All experiments are 

performed with Keras [41] and Tensorflow [42] libraries with NVIDIA GeForce RTX 2080 

GPU. 

4. Results 

The results are given in Figure 4. The left and right subfigures show the performances of 

the DECUSR and SRCNN models, respectively. The red line represents the scores in 

SSIM, whereas the blue line represents scores in PSNR. While the left vertical axis shows 



The European Journal of Research and 

Development, 2(2), 2022 https://doi.org/10.56038/ejrnd.v2i2.23  
 
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 28 

 
 

the PSNR, the right vertical axis show the SSIM. The first thing that can easily noticed 

from the figures is that the performances of both models increase noticeably as soon as 

data enrichment is applied. Looking at both sub-figures, it can be clearly seen that a 

higher performance is achieved when the original data is enriched with 90 degree 

rotation of images than that obtained from other singular transformation operations. Of 

the single operations, the second best performance was obtained from 270 degrees 

rotation, according to both metrics. According to the SSIM metric, the SRCNN hit its best 

performance when dataset is enriched through 180 degrees rotation. According to both 

metrics, amongst single flip operations, the most successful result was obtained when 

data enriched with horizontal flip (flip left to right). 

  

Figure 3. Architecture of DECUSR [2] model with three repeating blocks. 

According to the PSNR metric, the worst results of the DECUSR model were obtained 

when it is trained on enriched data by 180 degrees rotation. The second worst result came 

from vertical flipping (up to down). Similarly, according to SSIM, the worst result is 

obtained when it is trained on the data enriched with vertical flip procedure, then, flip on 

both axis (up to down plus left to right). On the other hand, the worst result for SRCNN 

according to both PSNR and SSIM metrics was obtained when it is trained on enriched 

data with vertical flip operation. 

As can be seen from the graph, the most successful result for both models was obtained 

from the training in which all data enrichment processes were included in the process. It 

is clearly seen how important it is to train deep networks on diversified and enriched 

data. 

In Figure 5, the visual results obtained from both deep learning models from a sample 

image of the ILSVRC2012 dataset when they are trained on the original and enriched data 

obtained by applying each of above mentioned enrichment procedures or all together. 

 

The original sample image and the reference piece taken from a certain section of the 

image are given in the top row. Other rows belong to DECUSR and SRCNN respectively. 
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They show the visual outcomes of both models when they are trained on each of enriched 

data. As can be seen from the figure, the visual results obtained are consistent with the 

quantitative results given in Figure 4. As a result of the training made with the mix of all 

operations for data enrichment, the models give much sharper, clearer and crisp results. 

 

 
(a) DECUSR  [2] with 3 repeating blocks 

 
(b) SRCNN [39] 

Figure 4. The performances of models in PSNR and SSIM measures. Subfigure on left is for 

DECUSR (a) whereas subfigure on right is for SRCNN (b).  The abbreviations for flip operations as 

follows; lr: left to right,  ud: up to down, udlr: up to down plus left to right. None indicates training 

with original dataset wihout any enrichment. 

On the other hand, the images obtained from training with the original dataset without 

any enrichment or augmentation have lower quality. It can be easily observed that many 

details are lost in the images. In particular, the blurring effect in high-frequency 

components such as edges is clearly visible. The degradations in the transitions between 

high and low frequency regions can easily be noticed as well. 

5. Conclusion 

In this study, it is investigated how the fundamental data enrichment operations affect 

the performance of deep networks in the super resolution problem. A total of six basic 

image transformations are exploited for enrichment procedures. For this purpose, 

DECUSR and SRCNN models were trained with the variants of the ILSVRC2012 dataset 

each of which were enriched with one of these six image transformation operations and 

all together. Considering only a single image transformation, it has been observed that 

the enrichment with 90 degree image rotation provides the best results. The most 

unsuccessful result was obtained when the models are trained on enriched data 

generated by flip upside-down operation. The models hit highest scores when they are 

trained with a mix of all translations. 
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An important consideration here is to examine the performance achieved by applying a 

mix of other translations without including those that adversely affect the performance. 

In the future, it is aimed to observe the outcomes of this concept. Furthermore, other 

transformations (spatial or affine) will also be included in the experiments. 

 

 

            
                Original image                Ground-truth patch    

 

 

No enrichment Rotate 90° Rotate 180° Rotate 270° Flip left to right Flip up to down 
Flip up to down 

+ left to right All 
 

        

D
EC

U
SR

 

        
 23.849/0.8327 24.220/0.841 25.511/0.859 25.576/0.856 25.419/0.859 24.434/0.848 25.280/0.858 26.861/0.869 

SR
C

N
N

 

        
 17.147/0.686 17.785/0.703 17.589/0.697 17.474/0.694 17.477/0.691 17.259/0.691 17.526/0.689 18.006/0.704 

Figure 5. The performances of models in PSNR and SSIM measures. Subfigure on left is 

for DECUSR (a) whereas subfigure on right is for SRCNN (b). The numeric values shown 

below the images show the PSNR and SSIM scores. 
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