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Abstract 

Estimating river streamflow is a key task for both flood protection and optimal water resource management. 

The high degree of uncertainty regarding watershed characteristics, hydrological processes, and climatic 

factors affecting river flows makes streamflow estimation a challenging problem. These reasons, combined 

with the increasing prevalence of data on streamflow and precipitation, often lead to data-driven models 

being preferred over physically-based or conceptual forecasting models. The goal of this study is to predict 

daily river streamflow data with high accuracy using bagging and boosting approaches, which are ensemble 

learning methods. In addition, the effect of tributary streamflow on the forecast performance was analyzed 

in the estimation of the streamflow data. According to the results obtained, it has been shown that ensemble 

learning models are successful in estimating daily streamflow data, and if the tributary streamflow data is 

also used as input in the estimation of the streamflow, the determination and correlation performance 

parameters are improved, and the streamflow data can be estimated using tributary streamflow data. 
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1. Introduction 

The sustainability of water is endangered day by day due to many negative factors 

such as global warming, droughts, and unplanned and unconscious water consumption. 

Making future estimations of water resources ensures planned, efficient and economical 

use of existing resources in all aspects in the future. Rivers play an important role in the 

water cycle. For this reason, precise and accurate streamflow forecasting is critical for 

water resource management, disaster prevention, and the protection of the aquatic 

environment [1–4]. The physical formation process of streamflow in basins is influenced 

by various factors such as precipitation, evaporation, topography and human activities, 
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so the process is very complex and difficult to understand [4]. Improving the performance 

of predictive models, especially for rivers with streamflow changes, is a difficult problem 

and studies are ongoing [5]. This is due to the fact that the physical relationships 

underlying the streamflow process are still not fully understood, have high complexity, 

are non-linear and non-stationary [6–9]. The relationship between the influence factors of 

the different periods in the sub-process and the flow will be able to determine the whole 

characteristic of the system. In most studies, a single data-driven model is often used to 

model the entire flow process by generalizing the system understanding, but further 

generalization can have a bad effect on the performance of the prediction model. Data-

driven models, which have the potential to achieve high accuracy with low 

computational cost, have recently been widely used for streamflow estimation to predict 

hydrological processes without prior knowledge [9–12]. Instead of physically modeling 

the formation process of the streamflow, data-driven approaches are adopted using time 

series analysis, regression analysis and machine learning models to predict future 

streamflow using long-term streamflow data [13]. For data-driven streamflow 

estimation, the relationship between input and output characteristics of streamflow data 

is often non-linear. With the analysis of time series models including Autoregressive 

(AR), Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving 

Average (ARMA) [14–16] and multiple linear regression (MLR) model [17], it is possible 

to obtain equations showing linear input-output relations.  

However, these models typically analyze the relationship between input and 

output linearly. The nonlinearity of the processes related to the formation of streamflows 

cannot be explained by these models and therefore the model prediction performance is 

negatively affected [18]. With advanced regression models, artificial intelligence 

techniques and machine learning models, the input-output relationship can be made with 

non-linear relations and offers an alternative powerful approach for streamflow 

estimation [5–7, 19]. Support vector regression (SVR) [8], artificial neural network (ANN) 

[9], Bayesian regression (BR) [10], random forest (RF) [11] and long short-term memory 

network , LSTM) [12][20] have been increasingly used in recent years and show better 

prediction performance than linear approaches. [22, 24, 31–33]. Although successful 

prediction results have been obtained by using machine learning methods, recently it has 

been tried to increase the success of machine learning algorithms by using ensemble 

models. Ensemble learning, by its nature, consists of various approaches based on 

different methodologies. Among these, bagging and boosting approaches are widely 

used [21, 22]. 

In this study, it is aimed to estimate the streamflow data. Since the streamflow data 

obtained as a result of the output of a complex process are non-linear and non-stationary, 

suitable methods for the estimation of these data and their performance have been 
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analyzed. Bagging and boosting approaches from Ensemble learning methods have been 

used in this study. 

Daily flow data obtained from the Susurluk basin Simav Stream were used. Streamflow 

estimation has been made on Simav Stream with tributary streamflow data. In the 

estimation of streamflow data, the effect of tributary data on estimation performance and 

the performance of Bagging and Boosting methods were analyzed.  

2. Materials and Methods 

2.1. Streamflow Data Used in the Forecasting Study 

The data recorded from stations 316, 324 and 332 on the Simav Stream in the Susurluk 

Basin operated by the General Directorate of State Hydraulic Works (Devlet Su İşleri, 

DSI) in Türkiye, are the 14-year average daily flow data between 1997 and 2011 [23]. The 

data used in the estimation study is shown in Figure 1. and 3579 of these data were used 

as training data and 1534 as test data. Statistical values of training and test data are given 

in Table 1. 

 

 

a 
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b 

 

c 

Figure 1: Daily streamflow data obtained from hydrological observation stations numbered as 

 a) st 316  b) st 324 c) st 332 used in the estimation study 

 

Table 1: Statistical values of the streamflow data used in the estimation study 

TRAINING DATA 

 
Maximum 

(m3/sn) 

Minimum 

(m3/sn) 

Mean 

 (m3/sn) 

Variance Skewness Kurtosis 

Main 

Tributary 
556 1.16  35.888     3377.3 3.6885   20.427 

Secondary 

Tributary 1 
256 0.083    7.952     234.1 6.9101   72.423 

Secondary 

Tributary 2 
40.8 0.006 2.319 17.6 3.8076   20.993 
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TESTING DATA 

 
Maximum 

(m3/sn) 

Minimum 

(m3/sn) 

Mean 

 (m3/sn) 

Variance Skewness Kurtosis 

Main 

Tributary 
662 0.784 39.9601     4959.7 3.9105 22.452 

Secondary 

Tributary 1 
251 0.38 9.6310     394.0 6.1378   53.528 

Secondary 

Tributary 2 
65.9 0 2.9480     31.1 4.2820   29.678 

 

The time indices of the data used for estimation and the input and output variables used 

are given in Table 2.  

Table 2: Input-output data and Input variables used in the estimation study 

Inputs for One Time Lag Model  Input Variables 
Output 

Main Tributary 

(Model 1) 

Main Tributary(t-1) Main Tributary(t) 

Main Tributary + Secondary 

Tributary1 

(Model 2) 

Main Tributary(t-1) + Secondary 

Tributary1(t-1) 

Main Tributary(t) 

Main Tributary + Secondary 

Tributary2 

(Model 3) 

Main Tributary(t-1) + Secondary 

Tributary2(t-1) 

Main Tributary(t) 

Main Tributary + Secondary 

Tributary1 + Secondary Tributary2 

(Model 4) 

Main Tributary(t-1)+ Secondary 

Tributary1(t-1) + Secondary 

Tributary2(t-1) 

Main Tributary(t) 

Secondary Tributary1 + Secondary 

Tributary2 

(Model 5) 

Secondary Tributary1(t-1) + 

Secondary Tributary2(t-1) 
Main Tributary(t) 

2.2. Ensemble Learning Algorithm 

The basic logic of ensemble learning methods is based on the principle that 

decisions taken with many samples give more accurate results than a decision taken from 

a single sample. The risk of one expert's decision being wrong is greater than the risk that 

the joint decision of several experts will be wrong. The ensemble learning method is 

inspired by nature and sociological relationships between humans and has recently been 

widely used to machine learning methods [24]. 

In order to obtain better prediction performance than using a single decision tree, 

ensemble methods have been developed that combine several decision trees. The basic 

principle in the community model is that a group of weak learners come together to form 
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a strong learner [25, 26]. Community models are examined in two classes, Bagging 

(Bootstrap Aggregation) and Boosting. 

2.2.1. Bagging Ensemble Learning Method 

The bagging ensemble learning method, which is an abbreviation of Bootstrap 

aggregating, was developed by Breiman [26]. Based on the Bootstrap sampling method, 

this method is based on training different subsets of the training data set. In this method, 

different training samples are obtained from the training dataset from the samples that 

displace each time. Classifiers are trained simultaneously with each sub-training set 

created. The bagging method uses the majority voting technique to combine the estimates 

of the classifiers. Bagging process steps are shown in Figure 2. 

 

 

Figure 2: Bagging algorithm steps 

In the bagging ensemble learning method, data is trained with a single type of 

classifier rather than different types of classifiers. The prediction results obtained by 

simultaneously training different sub-datasets of the same type of classifier as much as 

the number of Bootstrap sub-sample training datasets are combined. In this study, tree 
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learner was used in the implementation of the bagging method. In addition, the Number 

of Learning Cycles and Number of Split parameters have been optimized using the 

Bayesian Optimization method to obtain the best model with performance in the 

prediction study.  

2.2.2. Boosting Ensemble Learning Method 

The Boosting ensemble learning method uses the approach of combining classifiers 

for weak learners to obtain a stronger classifier than a single classifier. In this method, by 

combining many weak classifiers, the disadvantages of strong classifiers having a 

complex structure and being difficult to train are eliminated [25, 27]. 

While many classifiers are trained simultaneously in the Bagging method, the 

classifiers are not trained simultaneously by using iterative operations in the Boosting 

method. A powerful classifier is obtained with the boosting method in order to prevent 

the same errors from occurring by taking into account the errors in the previous 

estimation in each iterative process of the boosting method. 

Basically, three classifiers are used in the boosting algorithm and each classifier 

generates predictions. Firstly, the first classifier estimate is obtained, which classifies the 

randomly selected data set from the training data set. The second classifier is trained on 

a data set, half of which is misclassified by the first classifier and the other half is correctly 

classified. The final classifier is trained on data that the two classifiers did not match 

before. 

In the boosting ensemble learning method, the predictions of the classifier that receives 

the ensemble prediction majority vote are accepted [24, 27]. The process steps of the 

Boosting ensemble learning method are shown in Figure 3.. 

 

 

Figure 3: Boosting algorithm steps 

In this study, the LSBoost algorithm was used during the implementation of the 

boosting method. In this algorithm the ensemble adjusts a new learner to the difference 
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between the observed response and the sum of all previously grown learners at each 

phase. The mean-squared error is minimized by the ensemble fitting. In addition, as in 

the bagging method, the number of learning cycles, learning rate and number of split 

parameters have been optimized using the Bayesian Optimization method in order to 

obtain the best model in this method..  

2.3. Performance Evaluation Parameters  

Mean Square Error (MSE), Mean Absolute Error (MAE), Correlation coefficient (R) 

and Dtermination coefficient (R2), which are the statistical parameters commonly used in 

the streamflow estimation study, were used to evaluate the model performance [28]. 

Mean Squared Error: MSE is a measure of the performance of the prediction model. 

It is obtained by dividing the sum of the squares of the difference of the observed and 

predicted values in the data series by the total number of data. Since it is derived from 

the square of the Euclidean distance, it shows that the estimated value converges strongly 

to the true as the error approaches zero, and it always takes a positive value [28]. 

Mean Absolute Error: Mean absolute error is a measure of prediction error 

commonly used in time series analysis and is defined as the mean of the absolute values 

of errors between all samples in the observed data set and the predicted data. The fact 

that the MAE value is close to zero indicates that the result produced by the prediction 

model is strongly close to the desired value. 

Determination coefficient: The certainty coefficient is a measure of the fit of a 

modeled data with the observed data. It shows that the correlation between the observed 

and predicted data increases as the R2 value gets closer to 1 [29]. 

Correlation Coefficient: Correlation coefficient is the coefficient indicating the 

direction and magnitude of the relationship between observed and predicted data and 

takes a value between (-1) and (+1). The positive values of the correlation coefficient 

indicate the direct linear relationship between the variables; negative values indicate an 

inverse linear relationship. A correlation coefficient of 0 indicates that there is no linear 

relationship between these variables [29]. 

3. Results 

In this study, ensemble models were developed on the estimation of the daily 

streamflow data of the main tributary obtained from station 316 and the secondary 

tributary streamflow data obtained from stations 324 and 332 on Simav Stream in 

Susurluk basin. For the estimation of the daily flow data, the main tributary data itself 

and the secondary tributary data were also included in the forecasting study, and the 

effect of the secondary tributary data on the forecast performance was analyzed. 
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The estimation results of the daily streamflow data using the estimation model with the 

optimized parameters of the Bagging approach are shown in Table 3. The scatter plots 

between the observed data and the estimated data are shown in Figure 4. In addition, the 

graph of the forecasted data, in which the main tributary streamflow data is used as input 

(Model 1), is shown in Figure 5 as an example.  

Table 3: Forecasting performance results obtained with the Bagging Method  

Inputs for One Time Lag Model  MSE MAE R R2 

Main Tributary 8.4594e+03 50.7477 0.9079 0.8243 

Main Tributary + Secondary Tributary1 9.0548e+03 52.6944 0.9236 0.8531 

Main Tributary + Secondary Tributary2 8.8197e+03 52.0825 0.9125 0.8326 

Main Tributary + Secondary Tributary1 + Secondary 

Tributary2 
9.1235e+03 53.2197 0.9297 0.8643 

Secondary Tributary1 + Secondary Tributary2 9.2670e+03 54.8024 0.9006 0.8110 
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Figure 4: Scatter plots obtained from using Bagging algorithm 
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Figure 5: Forecasting graphics obtained from Model1 using Bagging algorithm 

The estimation results of the daily flow data by using the estimation model containing 

the LSBoosting approach with optimized parameters are shown in Table 4. The scatter 

plots between the observed data and the estimated data are shown in Figure 6. In 

addition, the graph of the forecasted data, in which the main tributary data is used as 

input (Model 1), is shown in Figure 7 as an example. 

Table 4: Forecast performance results obtained with the Boosting Method  

Inputs for One Time Lag Model  MSE MAE R R2 

Main Tributary 8.5549e+03 51.1694 0.9085 0.8254 

Main Tributary + Secondary Tributary1 9.0069e+03 51.8523 0.9247 0.8551 

Main Tributary + Secondary Tributary2 9.2399e+03 52.5929 0.9235 0.8529 

Main Tributary + Secondary Tributary1 + Secondary 

Tributary2 
9.3348e+03 52.7173 0.9191 0.8447 

Secondary Tributary1 + Secondary Tributary2 8.9361e+03 53.1081 0.9056 0.8201 

 

 



The European Journal of Research and 

Development, 2(4), 2022 https://doi.org/10.56038/ejrnd.v2i4.218  
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 367 

 

 
 

 
 



The European Journal of Research and 

Development, 2(4), 2022 https://doi.org/10.56038/ejrnd.v2i4.218  
 

Online ISSN: 2822-2296 journals.orclever.com/ejrnd 368 

 

 

Figure 6: Scatter plots obtained from using Boosting algorithm 

 

Figure 7: Forecasting graphics obtained from Model1 using Boosting algorithm 

4. Discussion and Conclusion 
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The characteristic model of streamflow cannot be easily predicted due to its high 

complexity, non-stationary, dynamic and non-linear properties. Modeling and 

forecasting of streamflow are essential for water resource planning and management, 

understanding and estimation of suspended sediment load, hydropower generation, 

design of an irrigation system suitable for plants, and optimum drainage policy from the 

reservoir. Streamflow forecasting is basically two-fold, real-time forecasting which is 

crucial for the reliable operation of flood and containment systems, and long-term 

forecasting important in reservoir operation and planning, hydropower generation, 

sediment transport, irrigation management decisions and many other applications 

performed in this category. 

When the literature studies are examined, it is stated that standard learning 

techniques are used in hydrological and river streamflow estimation of ML methods [30, 

31]. However, due to their higher efficiency in modelling, the applications of ensemble 

ML models in hydrological modeling have increased significantly in recent years [24]. 

In this study, a forward-time estimation of river flow data was performed using 

the ensemble models Bagging and LSBoosting. Estimation study was carried out by using 

daily streamflow data obtained from Simav Stream in Susurluk basin. During the 

establishment of the model, main and secondary tributary (Tributary1 and Tributary2) 

streamflow data were used separately and together as inputs in the model. 

In this study, the model with one-time lag index the highest R2 value is obtained 

as 0.8643 using bagging method with Model4. However, the smallest MSE value was 

8.4594e+03, which was obtained when only the main tributary data were used. 

Also the highest R2 value is obtained as 0.8551 using boosting method with Model2. 

However, the smallest MSE value was 8.5549e+03, which was obtained when only the 

main tributary data were used.  

According to the obtained results, it has been seen that the performance of the 

Bagging method and the performance of the LSBoosting method are close to each other 

in the estimation of daily streamflow data, but the Bagging method is slightly better. In 

addition, it has been observed that the R2 parameter in the models where the main 

tributary and the secondary tributary streamflow are used together as inputs is better 

than the models in which other inputs are used. However, the lowest MSE values were 

obtained only in models that used main strand data as input. 

In this study, it has been shown that the main tributary streamflow data can be 

estimated with high performance using the secondary tributary data. In fact, when the 

results obtained are examined from the tables, it is seen that the estimation obtained using 

only the secondary tributary streamflow data is quite close to the estimation performance 

made with only the main tributary streamflow data. 

According to the obtained results, it has been shown that daily streamflow can be 

predicted with high performance with Bagging and Boosting methods and the main 
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tributary streamflow estimation can be performed using the secondary tributary 

streamflow data. 
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